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adherence by other governments whose nationals 
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in 2003, and the Republic of Korea in 2005.  
Canada withdrew from the Commission in 1984. 
 Additional information about the IATTC and 
its publications can be found on the inside back 
cover of this report. 
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ESTIMATING RELATIVE ABUNDANCE FROM CATCH AND EFFORT DATA, US-
ING NEURAL NETWORKS 

by 

Mark N. Maunder and Michael G. Hinton 

ABSTRACT 

We develop and test a method to estimate relative abundance from catch and effort data using 
neural networks. Most stock assessment models use time series of relative abundance as their 
major source of information on abundance levels. These time series of relative abundance are 
frequently derived from catch-per-unit-of-effort (CPUE) data, using general linearized models 
(GLMs). GLMs are used to attempt to remove variation in CPUE that is not related to the abun-
dance of the population. However, GLMs are restricted in the types of relationships between the 
CPUE and the explanatory variables. An alternative approach is to use structural models based 
on scientific understanding to develop complex non-linear relationships between CPUE and the 
explanatory variables. Unfortunately, the scientific understanding required to develop these 
models may not be available. In contrast to structural models, neural networks uses the data to 
estimate the structure of the non-linear relationship between CPUE and the explanatory vari-
ables. Therefore neural networks may provide a better alternative when the structure of the rela-
tionship is uncertain. We use simulated data based on a habitat based-method to test the neural 
network approach and to compare it to the GLM approach. Cross validation and simulation tests 
show that the neural network performed better than nominal effort and the GLM approach. How-
ever, the improvement over GLMs is not substantial. We applied the neural network model to 
CPUE data for bigeye tuna (Thunnus obesus) in the Pacific Ocean. 

INTRODUCTION 

Catch per unit of effort (CPUE) from commercial vessels is often the main source of data for 
stock assessment models. Stock assessment models usually include the assumption that the popu-
lation abundance is proportional to the CPUE. However, CPUE can vary due to factors other 
than abundance. These factors include those related to the environment and fishermen’s behav-
ior. Often factors related to the environment interact with those related to this behavior. For ex-
ample, fishers control the depth of tuna longlines to target bigeye tuna, while the depth of the 
thermocline, which controls the vertical distribution of many species, changes with environ-
mental conditions. Therefore, it is important to standardize CPUE by removing the factors that 
affect catchability that are not related to abundance. 

There are numerous methods that have been used to standardize CPUE (Maunder and Punt, 
2004). Standardization with generalized linear models (GLMs) is one of the most commonly 
used methods. In GLM analysis, which is limited to linear relationships between CPUE and the 
explanatory variables, the estimated year effect is used as a relative abundance index for input 
into stock assessment models. Polynomials and interaction terms can be used in GLMs to make 
the relationship between CPUE and the explanatory variables more flexible, but GLMs are still 
limited in the relationships they can describe. 

An alternative to GLMs are mechanistic models based on our scientific understanding about the 
relationship between CPUE and the explanatory variables. These models may be complex and 
nonlinear. One such method that has been used for billfishes and tunas is the habitat-based stan-
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dardization (HBS) method of Hinton and Nakano (1996). The HBS models the location of hooks 
in the water column, using gear models and the distribution of fish based on oceanographic data 
and habitat preference data for the species being modeled. Hooks that fish in habitat with a 
higher preference level are assigned higher effective effort. 

GLMs and HBSs are two extremes of the possible methods used to standardize CPUE. The GLM 
models use little information about the structure of the relationships between CPUE and the ex-
planatory variables, and use statistical methods to estimate parameters of the model. The tradi-
tional HBS includes the assumption that the relationships between CPUE and the explanatory 
variables are known without error, and use the current understanding and data to develop the 
HBS. A statistical HBS has been developed that allows the parameters of the sub-models used in 
the HBS to be updated, based on fitting to the observed catch and effort data (Hinton and Maun-
der 2003). The statistical HBS model also integrates the explanatory variables used in GLMs into 
the HBS. This is a much better approach because it combines powerful features of both the HBS 
and GLM models (Maunder et al. 2002). 

One limitation of the statistical HBS is that the structural form of the HBS is fixed, based on sci-
entific understanding. Often this understanding is based on other species or on the same species 
in different oceans. It is possible that the structure of the HBS model is incorrect, and may cause 
bias in the estimated year effects that are used in stock assessment models. Therefore, it would 
be beneficial to develop a model that has a flexible structure that can be estimated from the data. 

A neural network allows a very flexible structure to the relationship between dependent and in-
dependent variables, and the data are used to estimate the relationship. Neural networks can be 
viewed as black boxes that take in explanatory variables and produce predictions, but do not pro-
vide the ability to easily interpret the relationship between them. If the year effect is all that is 
desired from the analysis, then as long as the neural network provides good estimates of the year 
effect, neural networks could be used to standardized CPUE data. Unfortunately, because of the 
difficulty of interpreting the explanatory variables, a standard neural network that takes the year 
as an input variable cannot be used. Therefore, the neural network must be modified to include a 
year effect. 

We develop a method based on integrating a neural network with GLM-type categorical vari-
ables to standardize CPUE data. The year effect is included as a categorical variable, and can be 
used as an index of relative abundance. We use cross validation to determine the best neural 
network for the application. We test the neural network with simulated data based on the habitat 
model, and compare the results to a GLM. We apply this method to CPUE data for bigeye tuna 
in the Pacific Ocean. 

ANALYTICAL METHODS 

The method we describe is based on predicting the catch given the known level of fishing effort 
and choosing the values of the parameters of the model that produce predictions that are closest 
to the observed catch. Therefore, we must define a model that predicts catch and a measure of 
how close the predictions match the observations. A non-linear function optimizer is used to find 
those values of the parameters of the model that make the best predictions.  

The model used to predict catch is divided into several components: the year effect, I; overall 
catchability, q; effort, E; continuous or discrete ordered explanatory variables, x; and categorical 
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explanatory variables, p. The year effect is of interest to stock assessment scientists because it is 
used to represent the relative annual abundance of the population when doing stock assessments. 
The goal of the standardization process is to remove effects on CPUE that are not related to the 
abundance of the population, which is achieved through explanation of variance by the categori-
cal variables and the neural network components. The methods can be viewed as integrating a 
GLM with a neural network.  

The neural network component is used to include continuous variables or ordered discrete vari-
ables into the analysis. For example, continuous variables could include depth of the thermo-
cline, sea-surface temperature, or vessel size; ordered discrete variables could include month or 
the number of hooks between floats for a longline. The neural network component is imple-
mented, using a general equation to combine the explanatory variables. It has been shown that a 
single hidden layer in a neural network model can be used to approximate a variety of conditions 
(Funahashi 1989). We follow the general method of Chen and Ware (1999), which sums the 
weighted values of the explanatory variables, adds a bias term, and then passes them through a 
logistic function, with the logistic function serving as the neuron in the hidden layer. In our 
model (Figure 1) we simplify the network by having only a single hidden layer:  

, ,m o o j h j j i i m
j i

y w w xφ β φ β
⎧ ⎫⎛ ⎞

= + +⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑ ∑  

where ym is the output signal (dependent variable) at observation m; φ  is the activation function 
[in our model logistic functions: ( ) 1(1 exp( ))x xφ −= + − ] for the output layer; oβ is the bias for the 
output layer; wj,i is the weight between input signal i and hidden neuron j; hφ  is the activation 
function for the hidden layer; jβ is the bias for hidden neuron j; wj is the weight of neuron j; and 
xi,m is the input signal (independent variable) i at observation m. 

In this model, the neurons in the hidden layer are summed, a bias term is added, and then the sum 
is passed through a logistic function in the output layer. A single output layer represents the neu-
ral network contribution to the predicted catch. The number of neurons in the hidden layer de-
termines the flexibility of the network, i.e. how well the model expresses the data, and can be 
modified to optimize performance of the model. 

While it is normal to include explanatory variables in neural networks, and year may be included 
as an explanatory variable, it is not normal to obtain estimates of individual effects, i.e. parame-
ter estimates, from networks, because the variables of interest generally have multiple significant 
interactions with other variables in the models, yet the estimate of the year effect is required as 
an index of relative abundance. To overcome this problem, we include the year effect as a sepa-
rate set of categorical variables. Note that, in general, to prevent confounding of the categorical 
variables, in each variable the value in one category must be set to one. Predicted catch ( ˆ

mC ) is 
equal to the product of the catchability standardized by the neural network, the overall catchabil-
ity, the year effect and the effort: ˆ

m t m mC qI y E=  , where q is the overall catchability, It is the year 
effect for year t, ym is the neural network contribution to catchability for observation m, and Em is 
the effort for observation m.  
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The neural network is not appropriate for explanatory variables that do not have a numerical or-
der (many categorical variables, e.g. vessel). Therefore, using the method of Maunder (2001), we 
add additional terms for categorical explanatory variables that do not have a numerical order. 
Categorical explanatory variables that do have a numerical order (e.g. month) can either be 
added in this manner or included in the neural network component. 

...
ˆ

m t m m a b nC qI y E p p p=  

where ap represents the effect when the categorical variable A for observation m is in category a. 

The type of interaction terms used in GLMs are incorporated in the neural network for ordered 
variables. Interaction terms with categorical variables can be implemented by having a different 
set of parameters for the neural network for each category of the categorical variable.  

We use the likelihood function as a measure of how well the predicted catch from the neural 
network fits the observed catch. Since the level of catch differs significantly from observation to 
observation, a lognormal likelihood function which has a constant standard deviation is an ap-
propriate choice. We also add a constant to the observed and predicted catch to avoid computa-
tional problems. The negative log-likelihood is minimized by simultaneously estimating the pa-
rameters of the neural network ( ,, , ,j j i o jw w β β ), the year effects (I), categorical variables (p), and 
the overall catchability (q). The likelihood equation is simplified in this case, because we are not 
estimating uncertainty or using the likelihood function for hypothesis testing. We use the func-
tion minimizer based on automatic differentiation in the AD Model Builder software package 
(Otter Research; http://otter-rsch.com/admodel.htm) to minimize the negative log-likelihood (ig-
noring constants):  

( ) ( ) ( ) 2ˆln | ln 1 ln 1L data parameters C C⎡ ⎤− = + − +⎣ ⎦  

Cross validation 

There is the requirement to determine the number of neurons in the hidden layer. The objective 
of the analysis is to estimate the year effect. Therefore, it is not desirable to include a large num-
ber of parameters (neurons) so that the explanatory variables explain the year effect, but also it is 
not desirable to have two few parameters so that the year effect is influenced by factors other 
than the abundance. We use cross validation to determine how many neurons to include in the 
hidden layer. We randomly select 10 percent of the data as a test data set, and then fit the model 
to the remaining 90 percent of the data to obtain parameter estimates. These levels are consistent 
with levels for training sets and validation sets recommended by Amari et al. (1997) for the 
number of parameters and data sets used. We then use the parameter estimates to predict the 
catches for the test data set. We repeat this procedure for different numbers of neurons in the 
hidden layer. The model that gives the best prediction of the test data set, as determined by the 
negative log likelihood criteria, is selected as the best model. We note that cross validation can 
also be used to compare the results obtained from the neural network to results obtained from 
those obtained using more traditional methods, such as nominal effort and GLMs. 



 

 

7

Starting values 

The likelihood surface of the neural network often has multiple local optima. These local optima 
usually have similar prediction ability; however it is useful to investigate the different local min-
ima to ensure that the analysis has not converged on a poor predictor. Therefore, it is important 
to investigate the estimates of the year effect with different random starting values for the neural 
network.  

Simulation tests 

We develop a simulation model based on the habitat model of Hinton and Nakano (1996). The 
model equations are given in the Appendix, and the following is a general description of the 
simulation. The fish are given a different preference level for each of 10 habitat strata, which are 
defined by depth. The fishing gear fishes at different depths, and the average depth fished has a 
trend toward greater depths over time. The depths are divided into 18 discrete categories to cor-
respond to hooks per basket (HBP) used in tuna longlines (Hinton and Nakano 1996). The habi-
tat strata change over time, based on a biased random walk, so that there is temporal correlation 
in the habitat. The population size also changes over time, based on a biased random walk with a 
declining trend. The data simulated are the catch, the month (the categorical variable), the depths 
of the 10 habitat strata, and the depth of each piece of fishing effort as one of the 18 categories. 
Ten observations are generated for each month, totaling 2400 data points. 

We fit three models to the simulated data to estimate the year effect, (1) nominal effort, (2) 
GLM, and (3) neural network . The nominal effort model is implemented by simply estimating a 
year effect as a categorical variable. The GLM model is implemented by estimating a year effect 
while including month and depth of the fishing gear (18 categories) as categorical variables and 
the 10 depths of the habitat strata as 10 continuous quadratic variables. No interaction terms are 
used in the GLM, and all continuous variables are included in the analysis at the same time. The 
neural network is implemented with the depth of the fishing gear and the 10 depths of the habitat 
strata as variables of the neural network component and month as a categorical variable. For the 
neural network, we investigate the appropriate number of nodes in the hidden layer (3, 4, or 5) to 
use in the analysis.  

The year effect from each of the models is normalized by the average, and then compared to the 
true year effect, which is also normalized. This is repeated 100 times. The median relative error, 
median absolute relative error, and median cross-validation scores are presented. 

Application 

We use the neural network to standardize CPUE and estimate the year effect for bigeye tuna in 
the Pacific Ocean from longline data in the area 20°S to 20°N and 140°E to 180°E. The catch 
(number of fish) and effort (number of hooks) data is summarized into 5° latitude by 5° longi-
tude by month by HPB strata. A total of 23,870 records from 1975 to 2000 are used. The ex-
planatory variables used are HPB, month, and temperature at depths of 40, 120, 200, 280, 360, 
and 440 meters. The objective function is weighted by 2ln( )mE , which is equivalent to weighting 
the standard deviation by 1ln( )mE − . We used the logarithm to reduce the influence of strata with 
extremely large effort (outliers). In the neural network application, month is used as a categorical 
variable, and HPB and depths are included in the neural network component. For the GLM ap-
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plication, month and HPB are used as categorical variables, and the depths are included as quad-
ratics. For each neural network investigated (3, 4, and 5 hidden neurons) 5 different sets of start-
ing values are used, and then the results for both the year effect and the cross validation score are 
averaged. 

RESULTS 

Simulations 

The results are presented as medians, since for a few of the simulated data sets the neural net-
work performed very poorly, inflating the mean (Table 1).  

The estimated year effect from the nominal effort shows a significant bias, with a trend from 
negative bias in the early years to positive bias in the later years (Figure 2). This trend is due to 
the increasing depth of the fishing gear into habitat that has a greater abundance of fish over 
time. Therefore, using nominal effort would give the appearance of a population that is in a 
healthier state than is really the case (e.g. see Figure 3). The error in the estimate of the year ef-
fect from the nominal effort model is high for all years (Figure 4). 

Both the GLM and neural network models do much better at estimating the year effect, with 
lower errors in the estimate of the year effect for all years (Figures 2 and 4). However, there is 
still a tendency to underestimate the year effect in the early years and overestimate it in the later 
years. The neural network does slightly better than the GLM method for all years (Figure 4). The 
neural network also produced smaller cross-validation scores (Table 1). The GLM performed 
better as more variables were included. It is interesting to note that including the continuous 
variables as quadratics substantially decreased the cross-validation score, but only slightly re-
duced the error in the estimate of the year effect (Table 1).  

The neural network with three hidden neurons produced, on average, less error in the estimate of 
the year effect and lower cross-validation scores (Table 1). However, the neural network with 
four neurons produced a lower cross validation score 58 percent of the time. Using the cross-
validation score to choose the number of neurons would choose three and four neurons about the 
same number of times. However, using the error in the estimated year effect, the neural network 
with three neurons would be chosen substantially more often. In fact, the cross-validation score 
would choose only the number of neurons (three, four or five) that gave the lowest error in esti-
mated year effect 41 percent of the time.  

When different random starting values were used with the neural network for one of the simu-
lated data sets, the estimated year effect differed among the starting values (Figure 5). Starting 
values that gave lower cross validation scores in general gave less error in the estimates of the 
year effect (Figure 6). 

Application 

The cross-validation scores are improved for all models compared to the nominal effort (Table 
3). The cross-validation scores for the GLM method are improved with the inclusion of the cate-
gorical variables and the continuous variables. The cross-validation scores suggest that a neural 
network with four hidden neurons is the optimal neural network, and is better than the GLM. 
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There is only a moderate difference in the year effect among all of the models (Figure 7). The 
biggest change from the nominal data is for the GLM that does not include the temperature data 
as continuous variables. This model estimates a greater decline in abundance than the other mod-
els. It is interesting to note that once the temperature data are included in the GLM the year ef-
fect moves back to being similar to the year effect from the nominal data. This suggests that the 
depth of the longline is not sufficient by itself, and that the environment that the longline is fish-
ing in should also be considered. 

The cross-validation scores differed enough among different starting values that some of the runs 
for the models with either three or five hidden neurons had lower cross-validation scores than 
some of the runs with four hidden neurons. However, the cross validation score from the GLM 
was never lower than the runs with four hidden neurons. The year effects from the different start-
ing values were essentially identical, as were the year effects from the models with three, four, 
and five hidden neurons. 

DISCUSSION 

We have developed a neural network for standardizing CPUE data. This method works well at 
estimating the year effect, which can be used in stock assessment models. The neural network 
model was shown to perform better at estimating the year effect than nominal effort and a simple 
GLM model. We used cross validation as a method to choose the optimal neural network. Cross 
validation was shown to perform well at choosing a model with low average absolute relative 
error in the year effect, but did not always choose the model with the least error. 

The performance of the neural network was not a substantial improvement over the simple GLM. 
Other formulations of the GLM (e.g. optimization by discarding some variables, including cubics 
or interaction terms) may have performed as well as the neural network. Wilson and Recknagel 
(2001) also found that the difference between multiple linear regression and a neural network 
was small for estimating algal abundance in freshwater lakes. However, the neural network 
shows promise, and simulations with different types of complex nonlinear relationships may in-
dicate that, in some situations, the performance of the neural network is substantially better than 
a GLM. Modifications to the neural network, including additional hidden layers, constrained 
training, or different likelihood functions, may increase its performance.  

One problem with the neural network model is that different estimates of the year effect can be 
obtained from different starting values. We have shown that starting values that give lower cross-
validation scores also generally give less average absolute relative error in the year effect. There-
fore, it is important that multiple starting values are used and that the estimates from those that 
give the least cross-validation score are used. It is also important to use multiple starting values 
when using cross validation to choose the number of neurons to use. Some form of model 
weighting based on the cross-validation scores may be a sensible way to combine results from 
multiple starting values, for example bagging (Wilson and Recknagel 2001).  

The cross-validation test appears to be a reasonable method for selecting a model that has rela-
tively low error. However, it may not always select the model with the least error. It is also pos-
sible that various randomly chosen training and test data sets will produce different results. It is 
also possible that choosing a different percentage of the data as a test set would also produce dif-
ferent results and high variance in predictions obtained from fitted models. Thus, it is important 
to determine how much of any data set should be devoted to training and how much to cross 
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validation (Arami et al. 1997). If the neural network is used to predict observations that are un-
derrepresented by the training data set, the method may not perform well. Therefore, for some 
applications, it is important to conduct tests that use groups of data (e.g. use all the data for a sin-
gle year as the test data set), rather than using a random selection from all the data (Hilbert and 
Ostendorf, 2001). Note that our application is not used to predict observations that have yet to be 
recorded, and therefore a randomly selected test data set is appropriate. 

The method we present is a black box for the neural network component. We did not attempt to 
determine which continuous variables had the most influence on the year effect. However, it is 
possible to some extent to investigate this influence. For example, Jeong et al. (2001) changed 
input values by ± 1 standard deviation and ± 2 standard deviations to determine the influence of 
each variable, and Reyjol et al. (2001) used a method based on the response of the partial deriva-
tive. 

Other applications using neural networks are also applicable to fisheries research. Chen and 
Ware (1999) developed a neural network to predict recruitment of herring from several different 
explanatory variables. Neural networks could be used in place of population dynamics models to 
predict the abundance or catch in the next year. This method, termed recurrent neural networks, 
uses the predicted abundance in year t - 1 as an input in the model for year t. For example, Jeong 
et al. (2001) used neural networks to model the time series of phytoplankton abundance. Con-
strained training, where the results of the neural network are penalized by the predictions of a 
structural model (Scardi 2001) may be a way to combine neural networks with other models. The 
special issue of Ecological Modeling (Volume 146, issue 1-3) contains several other applications 
to ecological modeling. 
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FIGURE 1.  Structure of the neural network with a single hidden layer. J is the number of neu-
rons in the hidden layer, L is the number of input variables, and zj represents hidden node j. 
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FIGURE 2.  Median relative error for the three models tested over time. 
 
 

 
FIGURE 3.  The estimated year effects from the three models compared to the true year effect 
for one realization of the simulated data. 
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FIGURE 4.  Median absolute relative error for the three models tested over time. 
 
 

 
 
FIGURE 5.  Estimates of the year effect from the neural network model with different starting 
values. 
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FIGURE 6.  Comparison of the cross-validation score with the average absolute relative error 
for 10 different random starting values of the neural network. 
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FIGURE 7.  The year effect estimated by the GLM without including the depths as continuous 
variables (top panel), GLM including the depths as continuous variables (middle panel), and the 
neural network with four hidden neurons (bottom panel) compared to the year effect from nomi-
nal effort. 
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TABLE 1.  Average cross-validation (cv) scores from the simulated data for several models.  
The cross-validation score is based on the negative log likelihood criteria. 

Model Variables Number of 
parameters 

Average abso-
lute error 

Median abso-
lute error 

Average cv 
score 

Nominal Year 20 0.62 0.46 482 
GLM Year, month 31 0.61 0.46 373 

GLM Year, month, 
depth 77 0.53 0.36 350 

GLM Year, month, 
depth, continuous 88 0.40 0.20 276 

GLM 
Year, month, 
depth, continuous 
as quadratic 

99 0.39 0.19 229 

Neural 
network 

Year, month, 3 
neurons 71 0.34 0.11 110 

Neural 
network 

Year, month, 4 
neurons 84 0.55 0.13 126 

Neural 
network 

Year, month, 5 
neurons 97 0.58 0.18 144 

 
 
 
TABLE 2.  The proportion of times that the neural networks with different numbers of neurons 
had the least average absolute error and cross-validation scores. 

Number of neurons Error Cross validation 
3 0.48 0.38 
4 0.29 0.39 
5 0.23 0.23 

 
 
 
TABLE 3.  Cross-validation (cv) scores for the different models applied to the bigeye tuna data. 

Model Number of pa-
rameters cv score 

Nominal 26 1803 
GLM categorical 42 1751 
GLM categorical and continuous linear 49 1491 
GLM categorical and continuous quadratic 56 1447 
Neural network with 3 hidden neurons 65 1428 
Neural network with 4 hidden neurons 74 1407 
Neural network with 5 hidden neurons 83 1411 

 
 



 

 

18

APPENDIX 

Simulated data 

The following set of equations describes the model used to generate the simulated data. The pa-
rameter values used are presented in Table A1. 
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( ) ( )1 1 exp
It t yearI I r ε−= +  

 
( )2~ 0,I INε σ  

 
where Cm is the catch for observation m, It is the year effect for year t, ps is the month effect for 
month s, Hm is the habitat effect for observation m, q is the overall catchability, Em is the effort 
for observation m, Dm,j is the depth lower bound of habitat j for observation m, dm is the depth of 
gear for observation m, rd is the trend term for depth of gear, Dmax is the maximum depth range 
within a habitat, Drμ is the trend term for the mean of the maximum depth range of a habitat, ryear 
is the trend term for abundance, hj is the habitat preference for habitat j. 

 

 
TABLE A1.  Parameter values used in the simulator. 

Parameter Value Parameter Value Parameter Value 
σ  0.2 h6 37 dσ  0.2 
h1 1 h7 40 Dσ  0.4 
h2 5 h8 25 Drμ  0 
h3 10 h9 8 Dμσ  0.2 
h4 20 h10 2 rI -0.05 
h5 30 rd 0.075 Iσ  0.5 
h5 30 rd 0.075 Iσ  0.5 

 



 The IATTC's responsibilities are met with two 
programs, the Tuna-Billfish Program and the 
Tuna-Dolphin Program.  The principal 
responsibilities of the Tuna-Billfish Program are 
(1) to study the biology of the tunas and related 
species of the eastern Pacific Ocean to estimate the 
effects that fishing and natural factors have on 
their abundance, (2) to recommend appropriate 
conservation measures so that the stocks of fish 
can be maintained at levels that will afford 
maximum sustainable catches, and (3) to collect 
information on compliance with Commission 
resolutions.  The principal responsibilities of the 
Tuna-Dolphin Program are (1) to monitor the 
abundance of dolphins and their mortality 
incidental to purse-seine fishing in the eastern 
Pacific Ocean, (2) to study the causes of mortality 
of dolphins during fishing operations and promote 
the use of fishing techniques and equipment that 
minimize these mortalities, (3) to study the effects 
of different modes of fishing on the various fish 
and other animals of the pelagic ecosystem, and 
(4) to provide a Secretariat for the International 
Dolphin Conservation Program. 
 An important part of the work of the IATTC is 
the prompt publication and wide distribution of its 
research results.  The Commission publishes its 
results in its Bulletin, Special Report, and Data 
Report series, all of which are issued on an 
irregular basis, and its Stock Assessment Reports 
and Fishery Status Reports, which are published 
annually. 
 The Commission also publishes Annual 
Reports and Quarterly Reports, which include 
policy actions of the Commission, information on 
the fishery, and reviews of the year's or quarter's 
work carried out by the staff.  The Annual Reports 
also contain financial statements and a roster of the 
IATTC staff. 
 Additional information on the IATTC’s 
publications can be found in its web site. 
 

 La CIAT cumple sus obligaciones mediante 
dos programas, el Programa Atún-Picudo y el 
Programa Atún-Delfín.  Las responsabilidades 
principales del primero son (1) estudiar la biología 
de los atunes y especies afines en el Océano 
Pacífico oriental a fin de determinar los efectos de 
la pesca y los factores naturales sobre su 
abundancia, (2) recomendar medidas apropiadas 
de conservación para permitir mantener los stocks 
de peces a niveles que brinden las capturas 
máximas sostenibles, (3) reunir información sobre 
el cumplimiento de las resoluciones de la 
Comisión.  Las responsabilidades principales del 
segundo son (1) dar seguimiento a la abundancia 
de los delfines y la mortalidad de los mismos 
incidental a la pesca con red de cerco en el Océano 
Pacífico oriental, (2) estudiar las causas de la 
mortalidad de delfines durante las operaciones de 
pesca y fomentar el uso de técnicas y aparejo de 
pesca que reduzcan dicha mortalidad al mínimo, 
(3) estudiar los efectos de distintas mortalidades 
de pesca sobre los varios peces y otros animales 
del ecosistema pelágico, (4) proporcionar la 
Secretaría para el Programa Internacional para la 
Conservación de los Delfines. 
 La pronta publicación y amplia distribución de 
los resultados de investigación forman un aspecto 
importante de las labores de la Comisión, la cual 
publica los resultados en su serie de Boletines, 
Informes Especiales, e Informes de Datos, 
publicados a intervalos irregulares, y sus Informes 
de Evaluación de Stocks y Informes de la 
Situación de la Pesquería, publicados anualmente.
 La Comisión publica también Informes 
Anuales e Informes Trimestrales; éstos incluyen 
información sobre las labores de la Comisión, la 
pesquería, y las investigaciones realizadas en el 
año o trimestre correspondiente.  Los Informes 
Anuales incluyen también un resumen financiero y 
una lista del personal de la CIAT. 
 En el sitio de internet de la CIAT se presenta 
información adicional sobre estas publicaciones. 
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