Identification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Date
2018
Metadata
Show full item recordAbstract
Over the last two decades, improvements in developing computational tools have made significant contributions to the classification of images of biological specimens to their corresponding species. These days, identification of biological species is much easier for taxonomists and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we developed a fully automated identification model for monogenean images based on the shape characters of the haptoral organs of eight species: Sinodiplectanotrema malayanum, Diplectanum jaculator, Trianchoratus pahangensis, Trianchoratus lonianchoratus, Trianchoratus malayensis, Metahaliotrema ypsilocleithru, Metahaliotrema mizellei and Metahaliotrema similis. Linear Discriminant Analysis (LDA) method was used to reduce the dimension of extracted feature vectors which were then used in the classification with K-Nearest Neighbor (KNN) and Artificial Neural Network (ANN) classifiers for the identification of monogenean specimens of eight species. The need for the discovery of new characters for identification of species has been acknowledged for log by systematic parasitology. Using the overall form of anchors and bars for extraction of features led to acceptable results in automated classification of monogeneans. To date, this is the first fully automated identification model for monogeneans with an accuracy of 86.25% using KNN and 93.1% using ANN.Journal
Iranian Journal of Fisheries ScienceVolume
17Issue/Article Nr
4Page Range
pp.805-820ae974a485f413a2113503eed53cd6c53
10.22092/ijfs.2018.117017
Scopus Count
Collections