Недавние добавления

  • McMullin On-Farm Flood Capture and Recharge Project: Hydrologic and Hydraulic Analyses (H&H), final report

    Bachand, P.A.M.; Trabant, S.; Vose, S.; Mussetter, B. (Kings River Conservation District, 2014-01)
    Approval of a Hydrologic and Hydraulic Analyses (H&H) by California Department of Water Resources (DWR) is a pre-requisite for projects being funded through DWR’s Flood Corridor Program. The H&H needs to show early in the project schedule in analysis acceptable to DWR that the project will produce the anticipated flood risk reduction benefits. A Benefit:Cost (B/C) ratio provides a metric for comparing benefits from a project in relation to DWR costs for the project. In our analysis, we calculated a B/C of 1.86 for Phase 1, the diversion of 150 cubic feet per second (cfs) from the Kings River onto the project during flood flow conditions between December and May, and of 1.98 for Phase 2/3, the diversion of 500 cfs from the Kings River onto the project during the same conditions. We provide background on the project and the area that will be affected by the project (the study area), summarize our methods, and present our findings.Two large hydrologic issues face the Kings Basin: severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, downstream communities along the Kings and San Joaquin Rivers have suffered over $1B in flood damages (2013$). To help mitigate these two issues, this project proposes diverting and capturing Kings River floodwater at the James Bypass onto agricultural lands adjacent to the Kings River for conjunctive use purposes (e.g. recharge, in lieu recharge, irrigation). This project is planned in three phases: Phase 1 (Ph1) will divert 150 cubic feet per second (cfs) onto agricultural fields from December through May and 100 cfs from June through September. Fifty-five hundred acres are planned for enrollment in Ph1 with 375 acres under flood easements; 1,125 acres managed under dual purpose of accepting flood flows and being managed for farming; and the remaining acreage receiving flood flows when available for in lieu recharge. Phases 2 and 3 (Ph 2/3) together will expand enrollment to 16,000 acres with expected equivalent ratios for flood easements, dual purpose and farming. Ph2/3 is planned to have a 500 cfs flood diversion and capture capacity. We assessed hydrologic and hydraulics conditions and economics for these planned phases following the scope of work defined in Task Order 1 between Kings River Conservation District (KRCD) and Tetra Tech.
  • On-Farm Flood Capture and Recharge (OFFCR) at an Organic Almond Orchard, Recharge Rates and Soil Profile Responses Groundwater Recharge Project, 2016

    Bachand, S.M.; Carlton, S.; Bachand, P.A.M. (Sustainable Conservation, 2017-04-18)
    Groundwater in much of California’s Central Valley (CV) has been critically over-drafted resulting in the implementation of the 2014 Sustainable Groundwater Management Act (SGMA). As Groundwater Sustainability Agencies (GSAs) work to comply with SGMA requirements and timelines, On-Farm Floodwater Capture and Recharge (OFFCR) is being studied to help increase recharge capacity. We implemented an OFFCR test on an organic almond orchard in the CV to assess achievable recharge rates attained through over-irrigation, and potential soil and water quality impacts. Irrigation water was applied via flood irrigation. We developed study sites and installed soil sensors for moisture and salinitymonitoring, took post-irrigation deep cores to assess changes in soil and porewater nitrogen and salt concentrations through the vadose zone, and monitored agronomic practices, recharge loading and crop yields.These studies were conducted on three recharge treatments with three replicated stations for each: 1) Control at about 6 inches of flooded water to meet ET as typical for irrigation (Control treatment), 2) Low Flooding of about 12 inches per irrigation application (Mid treatment), and 3) High Flooding of about 24 inches per irrigation application (High treatment).
  • Technical report: Modeling nitrate leaching risk from specialty crop fields during on-farm managed floodwater recharge in the Kings Groundwater Basin and the potential for its management

    Bachand, P.A.M.; Bachand, S.M.; Waterhouse, H.; Rath, J.; Ung, M.; Roy, S.; Kretsinger, V.; Dalgish, B.; Horwath, W.; Dahlke, H.; et al. (Sustainable Conservation, 2017-07-31)
    This project has focused on better understanding the potential impact of On-Farm Flood Capture and Recharge (OFFCR) on groundwater quality pertaining to salts and nitrate and on assessing potential management opportunities. To achieve these goals, we used a combination of field and modeling studies. For the field study, soil cores were taken to a depth of 30 feet in replicate across fields with three different specialty crops identified as important to the San Joaquin Valley (tomatoes, almonds, vineyards) and with potential suitability for OFFCR. A prime goal of the field study was to provide data for parameterizing two models developed to assess nitrate, salt and water transport through the vadose zone, prior to percolating into the groundwater aquifer.However, the field study also resulted in key findings that show its value as a stand-alone study: 1) Nitrate concentrations are highest in the upper vadose zone and affected by texture. Those effects are not evident in the deeper vadose zone. 2) Vadose zone nitrate concentrations are affected by the crop grown. These results suggest an opportunity for lower legacy mass transport for grapes and higher legacy mass transport for both tomatoes and almonds.3) Variability in individual farmers’ past and present fertilizer and water management practices contributes to different legacy salt and nitrate loads in the vadose zone.Data from the field study and other related and concurrent OFFCR field efforts were used during model development. The overall modeling approach was designed to model nitrate and salt transport for lands under OFFCR operation for different crop types, vadose zone characteristics and groundwater characteristics. The defined goals of this design and modeling approach were to: 1) model nitrate and salt movement through the vadose zone and into groundwater; 2) test the model against scenarios that consider different recharge rates, cultural practices, soil types, and depths to groundwater, assessing the timing and magnitude of loading through the vadose zone and the effects on underlying groundwater; and 3) recommend management practices to mitigate potential groundwater impacts. To achieve these goals, two models were integrated to simulate nitrate and salt transport through the vadose zone to groundwater under different scenarios: a 1D Hydrus model and an analytical groundwater model (AGM).
  • 2017 OFR demonstration site monitoring and analyses: Effects on soil hydrology and salinity, and potential implications on soil oxygen

    Bachand, S.M.; Hossner, R.; Bachand, P.A.M. (Sustainable Conservation, 2019-01-28)
    On-farm recharge (OFR) is a practice that uses surface water to alleviate demand on and replenish groundwater supplies. It can take on two forms: in lieu recharge and direct recharge. In lieu recharge utilizes surface water supplies instead of groundwater to irrigate crops. Direct recharge applies water beyond the needs of the crop and replenishes the groundwater supply. ...The present study examined OFR with grapes, walnuts, and pistachios at six sites in the San Joaquin Valley, plus one additional site from a previous study, also in the San Joaquin Valley. Each site was comprised of a recharge plot that received direct recharge paired with a control plot with the same crop and soil characteristics, but meant to receive in lieu recharge (via the flood system) or drip application with groundwater. At the end of the 2017 recharge demonstration, however, three control plots had also received direct recharge from water applications that exceeded the crop’s water demand. At another site, both control and test plots had only received in lieu recharge due to limited surface water amounts or the host growers’ more conservative volume of water application. ...The present study only covers one season of recharge. Long-term effects of recharge are not described by the present study and will require further monitoring. Further study is needed of the dynamics of soil oxygen during and after recharge events. Similarly, the fate of the water after it infiltrates past the root zone is not always known and the rate at which recharged water will reach an aquifer is seldom known for deep aquifers. A method to predict the fate of water quickly and broadly would be quite helpful in developing an on-farm recharge strategy. The present study does not look at the effects of recharge on soil biological processes, such as microbial respiration and plant oxygen demand. Further study of the recharge tolerance of specific species and rootstocks, as well as the impact on plant disease, is crucial.
  • Sierra Valley, CA – A white paper on the opportunities and challenges for management of groundwater under SGMA

    Bachand, P.A.M.; Burt, K.S.; Carlton, S.; Bachand, S.M. (Bachand & Associates, 2020-03-10)
    This paper discusses groundwater sustainability in California’s Sierra Valley based upon review of various hydrologic and geologic data sets and publications and presents our findings in the context of the 2014 Sustainable Groundwater Management Act (SGMA). The discussion related to SGMA is based upon our current understanding of the legislation. As this legislation is implemented, its interpretation may evolve. The paper provides potential next steps and mitigation strategies as Sierra Valley works to move toward sustainable groundwater management.
  • Groundwater relationships to pumping, precipitation and geology in high-elevation basin, Sierra Valley, CA

    Bachand, P.A.M.; Burt, K.S.; Carlton, S.; Bachand, S.M. (Bachand & Associates, 2020-03-10)
    Sierra Valley, located in the northern Sierra Nevada, California, serves as the Middle Fork Feather River headwaters and provides surface water to Oroville Dam of the California State Water Project (SWP). Under California’s Sustainable Groundwater Management Act (SGMA), the Sierra Valley sub-basin has been designated a medium-priority basin, due to chronic groundwater declines and the valley’s high ecological value as the largest freshwater marsh and meadow system in the Sierra Nevada. The Sierra Valley Groundwater Management District (SVGMD) serves as the Groundwater Sustainability Agency (GSA) for the Sierra Valley sub-basin. As such, SVGMD is tasked through SMGA with achieving sustainable groundwater management over an approximate 20-y timeframe. The first step is the development of a Groundwater Sustainability Plan (GSP) (to be completed by January 2022) that 1) hydrologically assesses the basin, 2) identifies methods and protocols to track groundwater trends, and 3) develops an initial suite of actions to move the basin towards groundwater sustainability. ... Our investigation builds on previous watershed studies and further establishes the Sierra Valley watershed as a highly complex hydrologic system. These complexities include: large variation in precipitation phase and quantity throughout the watershed; geologic features that restrict both vertical and lateral groundwater flow; many water inflow pathways, both surface and sub-surface, that are logistically impossible to quantify by conventional monitoring means. Prior attempts at developing accurate water budgets and numerical models of the watershed have been hindered by the uncertainty these factors present. Thus, though a hydrologic budget is required by SGMA for the development of the GSP, numerical models will be of limited utility as either tools to derive hydrologic budgets or to help determine the efficacy management actions to achieve sustainable groundwater conditions. In developing strategies to address undesirable groundwater conditions, we recommend an adaptive management approach paired with targeted and defensible data collection with standardized data collection, management and quality control procedures.
  • On-Farm Flood Flow Capture – addressing flood risks and groundwater overdraft in the Kings Basin, with potential applications throughout the Central Valley

    Bachand, P.A.M.; Horwath, W.R.; Roy, S.B.; Choperena, J.; Cameron, D. (Bachand & Associates, 2011-10)
    Project fact sheet prepared in cooperation with the USDA Natural Resources Conservation Service and the Kings River Conservation District.
  • Implications of using On-Farm Flood Flow Capture to recharge groundwater and mitigate flood risks along the Kings River, CA

    Bachand, P.A.M.; Horwath, W.R.; Roy, S.; Choperena, J.; Cameron, D. (Bachand & Associates, 2012-09-30)
    Two large hydrologic issues face the Kings Basin, severe and chronic overdraft of about 0.16M ac-ft annually, and flood risks along the Kings River and the downstream San Joaquin River. Since 1983, these floods have caused over $1B in damage in today’s dollars. Capturing flood flows of sufficient volume could help address these two pressing issues which are relevant to many regions of the Central Valley and will only be exacerbated with climate change. However, the Kings River has high variability associated with flow magnitudes which suggests that standard engineering approaches and acquisition of sufficient acreage through purchase and easements to capture and recharge flood waters would not be cost effective. An alternative approach investigated in this study, termed On-Farm Flood Flow Capture, involved leveraging large areas of private farmland to capture flood flows for both direct and in lieu recharge. This study investigated the technical and logistical feasibility of best management practices (BMPs) associated with On-Farm Flood Flow Capture. The investigation was conducted near Helm, CA, about 20 miles west of Fresno, CA. The experimental design identified a coordinated plan to determine infiltration rates for different soil series and different crops; develop a water budget for water applied throughout the program and estimate direct and in lieu recharge; provide a preliminary assessment of potential water quality impacts; assess logistical issues associated with implementation; and provide an economic summary of the program. At check locations, we measured average infiltration rates of 4.2 in/d for all fields and noted that infiltration rates decreased asymptotically over time to about 2 – 2.5 in/d. Rates did not differ significantly between the different crops and soils tested, but were found to be about an order of magnitude higher in one field. At a 2.5 in/d infiltration rate, 100 acres are required to infiltrate 10 CFS of captured flood flows. Water quality of applied flood flows from the Kings River had concentrations of COC (constituents of concern; i.e. nitrate, electrical conductivity or EC, phosphate, ammonium, total dissolved solids or TDS) one order of magnitude or more lower than for pumped groundwater at Terranova Ranch and similarly for a broader survey of regional groundwater. Applied flood flows flushed the root zone and upper vadose zone of nitrate and salts, leading to much lower EC and nitrate concentrations to a depth of 8 feet when compared to fields in which more limited flood flows were applied or for which drip irrigation with groundwater was the sole water source. In demonstrating this technology on the farm, approximately 3,100 ac-ft was diverted, primarily from April through mid-July, with about 70% towards in lieu and 30% towards direct recharge. Substantial flood flow volumes were applied to alfalfa, wine grapes and pistachio fields. A subset of those fields, primarily wine grapes and pistachios, were used primarily to demonstrate direct recharge. For those fields about 50 – 75% of water applied was calculated going to direct recharge. Data from the check studies suggests more flood flows could have been applied and infiltrated, effectively driving up the amount of water towards direct recharge. Costs to capture flood flows for in lieu and direct recharge for this project were low compared to recharge costs for other nearby systems and in comparison to irrigating with groundwater. Moreover, the potentially high flood capture capacity of this project suggests significant flood avoidance costs savings to downstream communities along the Kings and San Joaquin Rivers. Our analyses for Terranova Ranch suggest that allocating 25% or more flood flow water towards in lieu recharge and the rest toward direct recharge will result in an economically sustainable recharge approach paid through savings from reduced groundwater pumping. Two important issues need further consideration. First, these practices are likely to leach legacy salts and nitrates from the unsaturated zone into groundwater. We develop a conceptual model of EC movement through the unsaturated zone and estimated through mass balance calculations that approximately 10 kilograms per square meter of salts will be flushed into the groundwater through displacing 12 cubic meters per square meter of unsaturated zone pore water. This flux would increase groundwater salinity but an equivalent amount of water added subsequently is predicted as needed to return to current groundwater salinity levels. All subsequent flood flow capture and recharge is expected to further decrease groundwater salinity levels. Second, the project identified important farm-scale logistical issues including irrigator training; developing cropping plans to integrate farming and recharge activities; upgrading conveyance; and quantifying results. Regional logistical issues also exist related to conveyance, integration with agricultural management, economics, required acreage and Operation and Maintenance (O&M).
  • Final Evaluation Memorandum: Strategies for Resolving Low Dissolved Oxygen and Methylmercury Events in Northern Suisun Marsh

    Siegel, Stuart; Bachand, Philip; Gillenwater, Dan; Chappell, Steve; Wickland, Bruce; Rocha, Orlando; Stephenson, Mark; Heim, Wesley; Enright, Chris; Moyle, Peter; et al. (State Water Resources Control Board, 2011-05)
    The purpose of the project is to improve our understanding about best management practices that can be utilized on diked managed wetlands in Suisun Marsh for reducing the occurrence of low dissolved oxygen (DO) and high methylmercury (MeHg) events associated primarily with fall flood-up practices. Low DO events are of concern because they can lead to undue stress and even mortality of sensitive aquatic organisms. Elevated MeHg levels are of concern because MeHg is a neurotoxin that bio-magnifies up the food chain and can cause deleterious effects to higher trophic level consumers such as piscivorous fish, birds, and mammals (including humans). This study involved two years (2007-2008) of intensive field data collection at two managed wetland sites in northwest Suisun Marsh and their surrounding tidal sloughs, an area with prior documented low DO events. In addition, the study collected limited soils and water quality field data and mapped vegetation for three managed wetland sites in the central interior of Suisun Marsh, for the purpose of examining whether wetlands at other locations exhibit characteristics that could indicate potential for similar concerns. In Year 1 of the study, the objective was to identify the baseline conditions in the managed wetlands and determine which physical management conditions could be modified for Year 2 to reduce low DO and MeHg production issues most effectively. The objective of Year 2 was to evaluate the effectiveness of these modified management actions at reducing production of low DO and elevated MeHg conditions within the managed wetlands and to continue improving understanding of the underlying biogeochemical processes at play. This Final Evaluation Memorandum examined a total of 19 BMPs, 14 involving modified water management operations and the remaining five involving modified soil and vegetation management practices. Some of these BMPs were previously employed and others have not yet been tested. For each BMP this report assesses its efficacy in improving water quality conditions and potential conflicts with wetland management. It makes recommendations for further study (either feasibility assessments or field testing) and whether to consider for future use. Certain previously used BMPs were found to be important contributors to poor water quality conditions and their continued use is not recommended. Some BMPs that could improve water quality conditions appear difficult to implement in regards to compatibility with wetland management; these BMPs require further elaboration and feasibility assessment to determine whether they should be field tested. In practice for any given wetland, there is likely a combination of BMPs that would together have the greatest potential to address the low DO and high MeHg water quality concerns. Consequently, this report makes no sweeping recommendations applicable to large groups of wetlands but instead promotes a careful consideration of factors at each wetland or small groups of wetlands and from that assessment to apply the most effective suite of BMPs.This report also identifies a number of recommended future actions and studies. These recommendations are geared toward improving the process understanding of factors that promote low DO and high MeHg conditions, the extent of these problems in Suisun Marsh, the regulatory basis for the DO standards for a large estuarine marsh, the economics of BMPs, and alternative approaches to BMPs on diked managed wetlands that may address the water quality issues. The most important of these recommendations is that future BMP implementation should be carried out within the context of rigorous scientific evaluation so as to gain the maximum improvement in how to manage these water quality issues in the diked managed wetlands of Suisun Marsh.
  • Potential Application of Adsorptive Media to Enhance Phosphorus Uptake in Stormwater Basins and Wetlands at Lake Tahoe : literature review. Report to the University of California Davis Tahoe Research Group

    Bachand, Philip A.M. (Bachand & Associates, 2003)
    Phosphorus removal by wetlands and basins in Lake Tahoe may be improved through designing these systems to filter storm water through media having higher phosphorus removal capabilities than local parent material. Substrates rich in iron, aluminum and calcium oftentimes have enhanced phosphorus removal. These substrates can be naturally occurring, byproducts of industrial or water treatment processes, or engineered. Phosphorus removal fundamentally occurs through chemical adsorption and/or precipitation and much of the phosphorus can be irreversibly bound. In addition to these standard media, other engineered substrates are available to enhance P removal. One such substrate is locally available in Reno and uses lanthanum coated diatomaceous earth for arsenate removal. This material, which has a high positive surface charge, can also irreversibly remove phosphorus. Physical factors also affect P removal. Specifically, specific surface area and particle shape affect filtration capacity, contact area between water and the surface area, and likelihood of clogging and blinding. A number of substrates have been shown to effectively remove P in case studies. Based upon these studies, promising substrates include WTRs, blast furnace slag, steel furnace slag, OPC, calcite, marble Utelite and other LWAs, zeolite and shale. However, other nonperformance factors such as environmental considerations, application logistics, costs, and potential for cementification narrow the list of possible media for application at Tahoe. Industrial byproducts such as slags risk possible leaching of heavy metals and this potential cannot be easily predicted. Fly ash and other fine particle substrates would be more difficult to apply because they would need to be blended, making them less desirable and more costly to apply than larger diameter media. High transportation costs rule out non-local products. Finally, amorphous calcium products will eventually cementify reducing their effectiveness in filtration systems. Based upon these considerations, bauxite, LWAs and expanded shales/clays, iron-rich sands, activated alumina, marble and dolomite, and natural and lanthanum activated diatomaceous earth are the products most likely to be tested for application at Tahoe. These materials are typically iron, calcium or aluminum based; many have a high specific surface area; and all have low transportation costs. (PDF contains 21 pages)
  • Reducing non-point DOC and nitrogen exports from rice fields: A pilot study and quantitative survey to determine the effects of different hydrologic management practices : Deliverable 15.3 Final Report

    Bachand and Associates; Hydrofocus, Inc.; University of California, Davis; U.S. Geological Survey; Ducks Unlimited; Contra Costa Water District (Bachand and Associates, 2006)
    Rice cultivation at any level in the Sacramento–San Joaquin Delta (existing or expanded) compels the need to quantify surface and subsurface loads of dissolved organic carbon (DOC), disinfection byproduct precursors (DBPPs) and nitrogen. This information can be used to develop Best Management Practices (BMPs) to reduce export of these constituents in order to improve drinking water quality. Although rice cultivation in the Delta is relatively limited, several factors outside of this research could contribute to increased rice acreage in the Delta:• Recently developed rice varieties seem more suitable for the Delta climate than earlier varieties which required warmer conditions; • Previous economic analyses (Appendix A.10) suggest rice is more profitable than corn, adominant land use in the Delta; • Recent studies on wetlands at Twitchell Island suggest rice production can help mitigate oxidative subsidence (Miller et al. 2000); • The different oxidative states that result from flooding in rice as compared to those found in crops that require drained soils may help control crop specific weeds and nematodes when rice is incorporated into a crop rotation; and • Providing flooded conditions during a greater part of the year than other crops may benefit water birds.... (PDF contains 249 pages)
  • BMP treatment technologies, monitoring needs, and knowledge gaps: status of the knowledge and relevance within the Tahoe Basin

    Bachand, P.A.M.; Bachand, S.; Heyvaert, A (California State University Sacramento, Office of Water Programs, 2005)
    This Technical memorandum fulfills Task 2 for Agreement 03-495 between El Dorado County and the Office of Water Programs at California State University Sacramento and their co-authors, Bachand & Associates and the University of California Tahoe Research Group:1) a review of current stormwater treatment Best Management Practices (BMP) in the Tahoe Basin and their potential effectiveness in removing fine particles and reducing nutrient concentrations; 2) an assessment of the potential for improving the performance of different types of existing BMPs through retrofitting or better maintenance practices; 3) a review of additional promising treatment technologies not currently in use in the Tahoe Basin; and4) a list of recommendations to help address the knowledge gaps in BMP design and performance. ... (PDF contains 67 pages)
  • Adsorptive Media Investigations and Testing for Improved Performance of Stormwater Treatment Systems in the Tahoe Basin

    Bachand, P.A.M.; Heyvaert, A. (Bachand & Associates, 2005)
    Retrofit activities, such as improving hydrology and incorporating more advanced treatment methods into systems where feasible, may improve phosphorus (P) removalperformance of current Best Management Practices (BMPs). In the recent past, chemical treatment systems such as chemical dosing and the use of adsorptive media have become more prevalent for treating stormwater and hold promise for improving the P removal performance of stormwater treatment BMPs (Bachand et al., 2005; Patel et al., 2005). Our primary objective for this project has been to investigate whether adsorptive media hold any promise for improving P removal performance of stormwater basins and treatment wetlands at Lake Tahoe.... (PDF contains 99 pages)
  • Chemical Treatment Methods Pilot (CTMP) System for Treatment of Urban Runoff – Phase I. Feasibility and Design

    Bachand, P.A.M.; Heyvaert, A.; Werner, I.; Bachand, S.; The, S.J. (Bachand & Associates, 2007)
    (pdf contains 418 pages)