Recent Submissions

  • Comparing autonomous underwater vehicle (AUV) and vessel-based tracking performance for locating acoustically tagged fish

    Eiler, John H.; Grothues, Thomas M.; Dobarro, Joseph A.; Masuda, Michele M. (2013)
    Autonomous underwater vehicles (AUV’s) are increasingly used to collect physical, chemical, and biological information in the marine environment. Recent efforts include merging AUV technology with acoustic telemetry to provide information on the distribution and movements of marine fish. We compared surface vessel and AUV tracking capabilities under rigorous conditions in coastal waters near Juneau, Alaska. Tracking surveys were conducted with a REMUS 100 AUV equipped with an integrated acoustic receiver and hydrophone. The AUV was programmed to navigate along predetermined routes to detect both reference transmitters at 20–500 m depths and tagged fish and crabs in situ. Comparable boat surveys were also conducted. Transmitter depth had a major impact on tracking performance. The AUV was equally effective or better than the boat at detecting reference transmitters in shallow water, and significantly better for transmitters at deeper depths. Similar results were observed for tagged animals. Red king crab, Paralithodes camtschaticus, at moderate depths were recorded by both tracking methods, while only the AUV detected Sablefish, Anoplopoma fimbria, at depths exceeding 500 m. Strong currents and deep depths caused problems with AUV navigation, position estimation, and operational performance, but reflect problems encountered by other AUV applications that will likely diminish with future advances, enhanced methods, and increased use.
  • Three decades of U.S. Gulf of Mexico white shrimp, Litopenaeus setiferus, commercial catch statistics

    Hart , Rick A.; Nance, James M. (2013)
    Gulf of Mexico, white shrimp, Litopenaeus setiferus, catch statistics have been collected by NOAA’s National Marine Fisheries Service for over 50 years. Recent occurrences such as natural and manmade disasters have raised awareness for the need to publish these types of data. Here we report shrimp data collected from 1984 to 2011. These 28 years of catch history are the time series used in the most recent Gulf of Mexico white shrimp stock assessment. Fishing effort for this stock has fluctuated over the period reported, ranging from 54,675 to 162,952 days fished. Catch averaged 55.7 million pounds per year, increasing significantly over the times series. In addition, catch rates have been increasing in recent years, with CPUE levels ranging from 315 lb/day fished in 2002, to 1,175 lb/ day fished in 2008. The high CPUE’s we have measured is one indication that the stock was not in decline during this time period. Consequently, we believe the decline in effort levels is due purely to economic factors. Current stock assessments are now using these baseline data to provide managers with further insights into the Gulf L. setiferus stocks.
  • Historical knowledge of sharks: ancient science, earliest American encounters, and American science, fisheries, and utilization

    Castro, Jose I. (2013)
    In western civilization, the knowledge of the elasmobranch or selachian fishes (sharks and rays) begins with Aristotle (384–322 B.C.). Two of his extant works, the “Historia Animalium” and the “Generation of Animals,” both written about 330 B.C., demonstrate knowledge of elasmobranch fishes acquired by observation. Roman writers of works on natural history, such as Aelian and Pliny, who followed Aristotle, were compilers of available information. Their contribution was that they prevented the Greek knowledge from being lost, but they added few original observations. The fall of Rome, around 476 A.D., brought a period of economic regression and political chaos. These in turn brought intellectual thought to a standstill for nearly one thousand years, the period known as the Dark Ages. It would not be until the middle of the sixteenth century, well into the Renaissance, that knowledge of elasmobranchs would advance again. The works of Belon, Salviani, Rondelet, and Steno mark the beginnings of ichthyology, including the study of sharks and rays.The knowledge of sharks and rays increased slowly during and after the Renaissance, and the introduction of the Linnaean System of Nomenclature in 1735 marks the beginning of modern ichthyology. However, the first major work on sharks would not appear until the early nineteenth century. Knowledge acquired about sea animals usually follows their economic importance and exploitation, and this was also true with sharks. The first to learn about sharks in North America were the native fishermen who learned how, when, and where to catch them for food or for their oils. The early naturalists in America studied the land animals and plants; they had little interest in sharks. When faunistic works on fishes started to appear, naturalists just enumerated the species of sharks that they could discern. Throughout the U.S. colonial period, sharks were seldom utilized for food, although their liver oil or skins were often utilized. Throughout the nineteenth century, the Spiny Dogfish, Squalus acanthias, was the only shark species utilized in a large scale on both coasts. It was fished for its liver oil, which was used as a lubricant, and for lighting and tanning, and for its skin which was used as an abrasive. During the early part of the twentieth century, the Ocean Leather Company was started to process sea animals (primarily sharks) into leather, oil, fertilizer, fins, etc. The Ocean Leather Company enjoyed a monopoly on the shark leather industry for several decades. In 1937, the liver of the Soupfin Shark, Galeorhinus galeus, was found to be a rich source of vitamin A, and because the outbreak of World War II in 1938 interrupted the shipping of vitamin A from European sources, an intensive shark fishery soon developed along the U.S. West Coast. By 1939 the American shark leather fishery had transformed into the shark liver oil fishery of the early 1940’s, encompassing both coasts. By the late 1940’s, these fisheries were depleted because of overfishing and fishing in the nursery areas. Synthetic vitamin A appeared on the market in 1950, causing the fishery to be discontinued. During World War II, shark attacks on the survivors of sunken ships and downed aviators engendered the search for a shark repellent. This led to research aimed at understanding shark behavior and the sensory biology of sharks. From the late 1950’s to the 1980’s, funding from the Office of Naval Research was responsible for most of what was learned about the sensory biology of sharks.
  • Determinants of small-scale fishermen's income on Oman's Batinah Coast

    Al Jabri, Omar; Collins, Ray; Sun, Ximing; Omezzine, Abdallah; Belwal, Rakesh (2013)
    The small-scale fishing industry of Oman is responsible for almost 90 percent of the total marine fishery production. It is also the main supplier of fish for Omani households. This study analyzes the factors that determine small-scale fishermen’s income on Oman’s Batinah Coast, which has almost 30 percent of Oman’s population and more than one-third of the small-scale fishermen. We find that fishermen’sincome here can be explained broadly under four major blocks of variables: geographical region, fishing inputs and catch, socioeconomic and demographic characteristics, and the nature of the relationship with fisheries extension services. In general, the Wilayat (local administrative units) failed to make any significant impact on fishermen’s income. The variable “Fishing inputs and catch,” such as increases in engine power, boat length, weekly catch, and number of weekly trips, positively impacted fishermen’s income while increases in weekly fishing costs, number of crew members, and difficulty in getting ice had a significantly negative effect on the income. Furthermore, socioeconomic and demographic characteristics also contributed significantly in determining the fishermen’s income level. The other important findings were related to extension services. The variables “Fishermen’s exchange of information and cooperation with the ministry” and “Fishermen’s involvement in the extension activities” were found to have positive effects on fishermen’s income levels. Capitalizing on these findings could improve fishermen’s incomes and their lives across the region, as well as nationally.
  • Gear modifications for fishing octopus, Octopus vulgaris, on live-bottom and adjacent flat bottom habitats in coastal waters off North Carolina

    Rudershausen, Paul J. (2013)
    The Common Octopus, Octopus vulgaris, is an r-selected mollusk found off the coast of North Carolina that interests commercial fishermen because of its market value and the cost-effectiveness of unbaited pots that can catch it. This study sought to: 1) determine those gear and environmental factors that influenced catch rates of octopi, and 2) evaluate the feasibility of small-scale commercial operations for this species. Pots were fished from August 2010 through September 2011 set in strings over hard and sandy bottom in waters from 18 to 30 m deep in Onslow Bay, N.C. Three pot types were fished in each string; octopus pots with- and without lids, and conch pots. Proportional catch was modeled as a function of gear design and environmental factors (location, soak time, bottom type, and sea surface water temperature) using binomially distributed generalized linear models (GLM’s); parsimony of each GLM was assessed with Akaike Information Criteria (AIC). A total of 229 octopi were caught throughout the study. Pots with lids, pots without lids, and conch pots caught an average of 0.15, 0.17, and 0.11 octopi, respectively, with high variability in catch rates for each pot type. The GLM that best fit the data described proportional catch as a function of sea surface temperature, soak time, and station; greatest proportional catches occurred over short soak times, warmest temperatures, and less well known reef areas. Due to operating expenses (fuel, crew time, and maintenance), low catch rates of octopi, and high gear loss, a directed fishery for this species is not economically feasible at the catch rates found in this study. The model fitting to determine factors most influential on catch rates should help fishermen determine seasons and gear soak times thatare likely to maximize catch rates. Potting for octopi may be commercially practical as a supplemental activity when targeting demersal fish species that are found in similar habitats and depth ranges in coastal waters off North Carolina.
  • Sea turtles in Florida's Atlantic waters

    Bovery, Caitlin M.; Wyneken, Jeanette (2013)
    Management of marine turtles presents various challenges due to their highly migratory nature, which includes major ontogenetic habitat shifts, seasonal movements between feeding grounds, and migrations to and from breeding grounds. Further, sea turtle spatial distributions often differ in species-specific ways during similar temporal periods. Various approaches combine to give valuable insights into spatial and temporal distributions of sea turtles and provide critical knowledge for understanding and protecting these imperiled species. Here we summarize and synthesize available data that document sea turtle occurrences in waters from the Florida Straits (lat. 24°28´N) north to the latitude of Jacksonville, Fla. (lat. 30°20´ N), including waters up to 150 km offshore, termed Florida’s Atlantic waters for this review. We summarize 951 satellite tracked sea turtles, 288 of which crossed into Florida’s Atlantic waters. All species of sea turtles inhabiting the Atlantic Ocean were found to use Florida Atlantic waters. Sea turtles use Florida’s Atlantic waters year-round, yet distributions of individual species vary seasonally. We provide a current synthesis describing the spatial and temporal distributions of the five sea turtles species using Florida’s Atlantic waters and suggest areas where further study may be warranted.
  • Holistic fisheries management: combining macroecology, ecology, and evolutionary biology

    Fowler, Charles W.; Belgrano, Andrea; Casini, Michele (2013)
    Ecosystem-based management is one of many indispensable components of objective, holistic management of human impacts on nonhuman systems. By itself, however, ecosystem-based management carries the same risks we face with other forms of current management; holism requires more. Combining single-species and ecosystem approaches represents progress. However, it is now recognized that management also needs to be evosystem-based. In other words, management needs to account for all coevolutionary and evolutionary interactions among all species; otherwise we fall far short of holism. Fully holistic practices are quite distinct from the approaches to the management of fisheries that are applied today. In this paper, we show how macroecological patterns can guide management consistently, objectively, and holistically. We present one particular macroecological pattern with two applications. The first application is a case study of fisheries from the Baltic Sea involving historical data for two species; the second involves a sample of 44 species of primarily marine fish worldwide. In both cases we evaluate historical fishing rates and determine holistic/systemic sustainable single-species fishing rates to illustrate that conventional fisheriesmanagement leads to much more extensive and pervasive overfishing than currently realized; harvests are, on average, over twenty-fold too large to be fully sustainable. In general, our approach involves not only the sustainability of fisheries and related resources but also the sustainability of the ecosystems and evosystems in which they occur. Using macroecological patterns accomplishes four important goals:1) Macroecology becomes one of the interdisciplinary components of management. 2) Sustainability becomes an option for harvests from populations of individual species, species groups, ecosystems, and the entire marine environment. 3) Policies and goals are reality-based, holistic, or fully systemic; they account for ecological as well as evolutionary factors and dynamics (including management itself). 4) Numerous management questions can be addressed.
  • Seafood consumption and supply sources in Hawaii, 2000-2009

    Loke, Matthew K.; Geslani, Cheryl; Takenaka, Brooks; Leung, Pingsun (2012)
    Measures of consumption and supply sources of seafood can provide valuable input to research and policy planning of a viable food system. This article fills a gap in the existing literature by mapping the existing seafood supply flows from various sources (local, domestic U.S., and foreign) in Hawaii. The authors trace the seafood transshipment of foreign origin via the continental United States to Hawaii and update total and per capita consumption of seafood more accurately by including noncommercial catches into the analysis. Per capita seafood consumption in Hawaii from all commercial sources is estimated at an annual average of 29 edible pounds during the 10-year period from 2000 to 2009. This is significantly more than the 16 edible pounds for all U.S consumption in 2009. Including noncommercial catch, the same measure increases to 37 edible pounds. The eight-pound differential suggests that noncommercial fishing is an important source of seafood supply in Hawaii. Overall, fresh tuna (Thunnus spp.) is the single largest species group consumed, followed by Pacific and Atlantic salmon (Salmonidae). By edible weight, the majority of Hawaii’s commercial seafood supply comes from foreign sources (57%) vs. local sources (37%), and U.S. domestic sources (6%). The leading sources for Hawaii’s direct seafood imports from 2000 to 2009, were Taiwan, Japan, New Zealand, the Philippines, and the Marshall Islands. Local supply becomes the majority source once noncommercial catch is included with 51% of the total supply.
  • Biscayne Bay commercial pink shrimp, Farfantepenaeus duorarum, fisheries, 1986-2005

    Johnson, Darlene R.; Browder, Joan A.; Brown-Eyo, Pamela; Robblee, Michael B. (2012)
    The Biscayne Bay bait (1986–2005) and food (1989–2005) fisheries for pink shrimp were examined using dealer-reported individual vessel-trip landings data, separated by waterbody code to represent only catches from Biscayne Bay. Annual landings varied little during the 1980’s and early 1990’s, and landings of the bait shrimp fishery exceeded those of the food shrimp fishery. The number of trips and landings in both fisheries increased from the late 1990’s through 2002 and food shrimp landings exceeded landings of bait shrimp; landings in both fisheries decreased sharply in 2003. Landings in both fisheries increased in 2004 and 2005, but the increase in food shrimp landings was stronger. Annual catch per trip was much lower in the bait fishery than the food fishery. Each fishery exploited shrimp of a different size. The bait fishery targeted shrimp less than 19 mm carapace length (CL), whereas the food fishery caught shrimp greater than 19 mm CL. We compared monthly bait shrimp catch per unit of effort (CPUE) from the fishery to an estimate of shrimp density from a fishery-independent sampling effort over a 3-yr period and found a strong statistical relationship with the density estimate lagged by 3 mo. The relationship supported the use of bait shrimp fishery CPUE as an index of abundance in upcoming assessments of the effect of a massive water-management-based ecosystem restoration project on pink shrimp in Biscayne Bay. Project implementation will affect freshwater inflows to the bay and salinity patterns. An abundance index with a lengthy pre-implementation history that can be carried into the operational phase of the restoration project will be invaluable in assessing project effects and protecting an important fishery resource of Biscayne Bay. The bait shrimp fishery can provide a continuing index of shrimp abundance from late 1986 forward.
  • Characterization of the U.S. Gulf of Mexico and South Atlantic penaeid and rock shrimp fisheries based on observer data

    Scott-Denton, Elizabeth; Cryer, Pat F.; Duffy, Matt R.; Gocke, Judith P.; Harrelson, Mike R.; Kinsella, Donna L.; Nance, James M.; Pulver, Jeff R.; Smith, Rebecca C.; Williams, Jo A. (2012)
    In July 2007, a mandatory Federal observer program was implemented to characterize the U.S. Gulf of Mexico penaeid shrimp (Farfantepenaeus aztecus, F. duorarum, and Litopenaeus setiferus) fishery. In June 2008, the program expanded to include the South Atlantic penaeid and rock shrimp, Sicyonia spp., fisheries. Data collected from 10,206 tows during 5,197 sea days of observations were analyzed by geographical area and target species. The majority of tows (~70%) sampled were off the coasts of Texas and Louisiana. Based on total hours towed, the highest concentrated effort occurred off South Texas and southwestern Florida. Gear information, such as net characteristics, bycatch reduction devices, and turtle excluder devices were fairly consistent among areas and target species. By species categories, finfish comprised the majority (≥57%) of the catch composition in the Gulf of Mexico and South Atlantic penaeid shrimp fisheries, while in the South Atlantic rock shrimp fishery the largest component (41%) was rock shrimp. Bycatch to shrimp ratios were lower than reported in previous studies for the Gulf of Mexico penaeid shrimp fishery. These decreased ratios may be attributed to several factors, notably decreased shrimp effort and higher shrimp catch per unit of effort (CPUE) in recent years. CPUE density surface plots for several species of interest illustrated spatial differences in distribution. Hot Spot Analyses for shrimp (penaeid and rock) and bycatch species identified areas with significant clustering of high or low CPUE values. Spatial and temporal distribution of protected species interactions were documented.
  • Estimates of total seabird bycatch by Atlantic pelagic longline fisheries from 2003 to 2006

    Klaer, Neil L. (2012)
    Results of recent seabird bycatch studies in the International Commission for the Conservation of Atlantic Tunas Convention Area were combined to estimate total seabird bycatch of pelagic longline fishing in the Atlantic Ocean, and bycatch per selected species. Available studies do not apply to the full spatial and temporal extent of the fishing effort, so assumptions were made to account for missing information. Over the 4 years from 2003 to 2006 the total seabird bycatch estimate was 48,500. Results indicate that about 57% of the pelagic longline seabird bycatch was albatrosses (Diomedea, Phoebastria, Thalassarche, Phoebetria spp.). This mortality is at a level to cause concern for the smaller and more vulnerable albatross populations in the region. Variation in annual seabird bycatch was caused by variation in total fishing effort, and movement of effort away from areas of higher seabird bycatch rates.
  • Estimating overall fish bycatch in U.S. commercial fisheries

    Brooke, Samantha G.; Desfosse, Lisa L.; Karp, William A. (2012)
    Bycatch, or the unintended capture of fish, marine mammals, sea turtles, and seabirds by fishing gear, occurs to some degree in most fisheries. The recently released National Marine Fisheries Service’s (NMFS) U.S. National Bycatch Report provides information on bycatch in U.S. commercial fisheries by fishery and species. The report also provides national statistics in the form of national bycatch ratio and a national bycatch estimate. We describe the methods used to develop these statistics and compare them to similar studies. We conclude that the national bycatch ratio and national bycatch estimates developed by NMFS represent the best available information on bycatch in U.S. fisheries. However, given changes in bycatch management over time, as well as inter-annual variability in bycatch levels and a high percentage of fisheries for which data on bycatch are not currently available, we recommend that NMFS continue to support bycatch data collection and reporting efforts to improve the quality and quantity of bycatch data and estimates available to fisheries managers and scientists over time. This will enable NMFS to meet its requirements for bycatch reporting under the Magnuson-Stevens Act (MSA), as well as requirements for bycatch minimization under the MSA, Marine Mammal Protection Act, and Endangered Species Act.
  • Reducing sea turtle bycatch in trawl nets: a history of NMFS turtle excluder device (TED) research

    Jenkins, Lekelia D. (2012)
    Thirty-six years ago, NOAA’s National Marine Fisheries Service began research on how to reduce mortality of sea turtles, Chelonioidea, in shrimp trawls. As a result of efforts of NMFS and many stakeholders, including domestic and foreign fishermen, environmentalists, Sea Grant agents, and government agencies, many trawl fisheries around the world use a version of the turtle excluder device (TED). This article chronicles the contributions of NMFS to this effort, much of which occurred at the NMFS Mississippi Laboratories in Pascagoula. Specifically, it summarizes the impetus for and results of major developments and little known events in the TED research and discusses how these influenced the course of subsequent research.
  • Evaluating the quality of bycatch data and bycatch estimates among disparate fisheries

    Desfosse, Lisa L.; Karp, William A.; Brooke, Samantha G. (2012)
    In 2006, the National Marine Fisheries Service, NOAA, initiated development of a national bycatch report that would provide bycatch estimates for U.S. commercial fisheries at the fishery and species levels for fishes, marine mammals, sea turtles, and seabirds. As part of this project, the need to quantify the relative quality of available bycatch data and estimation methods was identified. Working collaboratively with fisheries managers and scientists across the nation, a system of evaluation was developed. Herein we describe the development of this system (the “tier system”), its components, and its application. We also discuss the value of the tier system in allowing fisheries managers to identify research needs and efficiently allocate limited resources toward those areas that will result in the greatest improvement to bycatch data and estimation quality.
  • Bycatch in marine fisheries

    Ward, John M.; Benaka, Lee R.; Moore, Christopher M.; Meyers, Steve (2012)
    A review of the significant contributions in the peer-reviewed literature indicates that the discarding of marine fish known as bycatch remains one of the most significant problem facing fisheries managers. Bycatch has negative affects on marine biodiversity, is ripe with ethical and moral issues surrounding the waste of life from increased juvenile fish mortality, hinders commercial profitability and recreational satisfaction, increases management costs, and results in socio-cultural problems and conflicts. While appearing to have a simple conservation engineering solution, reducing or eliminating bycatch in marine fishing operations given the presently existing regulated open access management environment is demonstrated to actually be so complex that its effects can appear to be counter-intuitive. An ecosystem simulation model that explicitly incorporates the human and biological dimensions is used to evaluate proposed bycatch reduction regulations for two fishing fleets exploiting three out of seven species of fish, each with ten cohorts, in two resource areas. One of the fishing fleets is divided into two components representing commercial fishermen and recreational anglers. The seven fish species represent predator, prey, and competitor behaviors and one stock is treated as an endangered species. The results displayed in a series of figures demonstrate the potential unintended effects of simplistic management approaches and the need for a holistic and comprehensive approach to bycatch management. That is, an ecosystem model that explicitly incorporates socio-cultural and biophysical attributes into a common framework allows the magnitude and direction of behavioral responses to be predicted based on changes in governance or biophysical constraints to determine if management goals and objectives have been obtained through the use of quantitative metrics.
  • Bycatch provisions in the reauthorized Magnuson-Stevens Act

    Benaka, Lee R.; Cimo, Laura F.; Jenkins, Lekelia D. (2012)
    Bycatch can harm marine ecosystems, reduce biodiversity, lead to injury or mortality of protected species, and have severe economic implications for fisheries. On 12 January 2007, President George W. Bush signed the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act of 2006 (MSRA). The MSRA required the U.S. Secretary of Commerce (Secretary) to establish a Bycatch Reduction Engineering Program (BREP) to develop technological devices and other conservation engineering changes designed to minimize bycatch, seabird interactions, bycatch mortality, and post-release mortality in Federally managed fisheries. The MSRA also required the Secretary to identify nations whose vessels are engaged in the bycatch of protected living marine resources (PLMR’s) under specified circumstances and to certify that these nations have 1) adopted regulatory programs for PLMR’s that are comparable to U.S. programs, taking into account different conditions, and 2) established management plans for PLMR’s that assist in the collection of data to support assessments and conservation of these resources. If a nation fails to take sufficient corrective action and does not receive a positive certification, fishing products from that country may be subject to import prohibitions into the United States. The BREP has made significant progress to develop technological devices and other conservation engineering designed to minimize bycatch, including improvements to bycatch reduction devices and turtle excluder devices in Atlantic and Gulf of Mexico trawl fisheries, gillnets in Northeast fisheries, and trawls in Alaska and Pacific Northwest fisheries. In addition, the international provisions of the MSRA have provided an innovative tool through which the United States can address bycatch by foreign nations. However, the inability of the National Marine Fisheries Service to identify nations whose vessels are engaged in the bycatch of PLMR’s to date will require the development of additional approaches to meet this mandate.
  • Centennial Lecture I: History and Contributions of the Woods Hole Fisheries Laboratory

    Edwards , Robert L. (1988)
    The genesis and the early history of the Woods Hole Laboratory (WHL), to a lesser extent the Marine Biological Laboratory (MBL), and to some degree the Woods Hole Oceanographic Institution (WHOI), were elegantly covered by Paul S. Galtsoff (1962) in his BCF Circular "The Story of the Bureau of Commercial Fisheries Biological Laboratory, Woods Hole, Massachusetts." It covers the period from the beginning in 1871 to 1958. Galtsoffs more than 35-year career in the fishery service was spent almost entirely in Woods Hole. I will only briefly touch on that portion of the Laboratory's history covered by Galtsoff.Woods Hole, as a center of marine science, was conceived and implemented largely by one man, Spencer Fullerton Baird, at that time Assistant Secretary of the Smithsonian and who was also instrumental in the establishment of the National Museum and Permanent Secretary of the newly established American Association for the Advancement of Science. He was appointed by President Ulysses S. Grant in 1871 as the first U.S. Commissioner of Fisheries. Fisheries research began here as early as 1871, but a permanent station did not exist until 1885.
  • Foreword and Acknowledgments: Woods Hole Laboratory Centennial

    Theroux, Roger B. (1988)
    The year 1985 was one of celebration for the Woods Hole Laboratory of the National Marine Fisheries Service'sNortheast Fisheries Center. The reason was the one hundredth anniversary of the completion and occupation of the first facility in the world dedicated to marine fisheries research.Spencer Fullerton Baird, Assistant Secretary of the Smithsonian Institution, and newly appointed first Commissioner of the nascent U.S. Commission of Fish and Fisheries visited Woods Hole in the summer of 1871 to establish a base from which to begin the investigationsmandated by Congress when they established the "Fish Commission." During the following three summers (1872-74), operations were conducted from several other localities along the New England coast. During the course of those four years Baird determined that Woods Hole offered the most suitable natural and physical amenities for the investigations being conducted by the Fish Commission at that time, and for those envisioned for the future. The base for Commission operations was returned to Woods Hole in the summer of 1875 and has remained there ever since, through times fair and foul and several agency changes.
  • Marine Fisheries History: The 50th Anniversay Issue of the Marine Fisheries Review

    Hobart, Willis L. (1988)
    The 1980's seems to have been the decade for conservation anniversaries. Celebrating centennials have been theU.S. Fishery Bulletin (1981), NMFS Woods Hole Laboratory (1985), Journal of the Marine Biological Association (1987) and the Association itself (1984), Pacific halibut fishery (1988), Marine Biological Laboratory at Woods Hole, Mass. (1988), and England's Ministry of Agriculture, Fisheries, and Food (1989).While the U. S. Department of Commerce turned 75 (1988), 50th anniversaries were nlarked by the NMFS Northwest and Alaska Fisheries Center (1981), The Wildlife Society and itsJournal ofWildlife Management (1987), National Wildlife Federation (1986), International Game Fish Association (1989), and, of course, the Marine Fisheries Review (1988), which provided the raison d'etre for this special issue being devoted to "Marine Fisheries History."
  • The Driftnet Fishery in the Fort Pierce-Port Salerno Area off Southeast Florida

    Schaefer, H. Charles; Barger, Lyman E.; Kumpf, Herman E. (1989)
    From May through September 1987, observations were made on 38 trips in the driftnet fishery off the Fort Pierce-Port Salerno area off southeast Florida. Of the number and weight of fish landed on observed trips, 91.6 percent consisted of king mackerel, Scomberomorus cavalla, the targeted species. Over 33 species of fishes were observed among the discarded by-catch. The most frequently occurring species in the discards was little tunny, Euthynnus alletteratus, which made up 67.0 percent by number of the discarded by-catch. Total landings for all commercial gear from Saint Lucie and Martin counties (the counties of the study area) increased 516,741 pounds from 1986 to 1987. In 1986, 55 percent of the catch was from handline and 45 percent from driftnet landings. In 1987, 78 percent wasfrom driftnet and 22 percent from handline landings. A comparison of lengths from recreational and commercial landings showed recreationally caught fish to be, on the average, smaller. No marine mammals, birds, or turtles were entangled in the net on observed trips. Data on cost ofnets. fuel, and supplies plus the distribution of earnings among the crew were obtained for five driftnet boats.

View more