Recent Submissions

  • Climate impacts on U. S. living marine resources: National Marine Fisheries Services concerns, activities and needs

    Osgood, K. E. (National Oceanic and Atmospheric Administration, 2008)
    With the increasing recognition that climate change is occurring and having large impacts on living marine resources, a sound ecosystem approach to management of those resources requires both understanding how climate affects ecosystems and integration of that understanding into management processes. The National Marine Fisheries Service (NMFS) must identify how changing climatic conditions will impact its mission and must be prepared to adapt to these changes. This document identifies the climate related ecosystem concerns in the regional marineecosystems for which NMFS has living marine resource management responsibilities, what NMFS is currently doing to address these concerns, what NMFS must do going forward to address these concerns, and what climate information is needed to integrate climate into resource management. The regional ecosystems included in this analysis are: the Northeast U.S. Continental Shelf; the Southeast U.S. Continental Shelf, Gulf of Mexico, and U.S. Caribbean;the California Current Ecosystem; the Alaskan Ecosystem Complex; the Pacific Island Ecosystem Complex; the Eastern Tropical Pacific; North Pacific Highly Migratory Species; and the Antarctic.
  • Marine Fisheries Stock Assessment Improvement Plan: report of the National Marine Fisheries Service National Task Force for Improving Fish Stock Assessments

    Mace, Pamela M.; Bartoo, Norman W.; Hollowed, Anne B.; Kleiber, Pierre; Methot, Richard D.; Murawski, Steven A.; Powers, Joseph E.; Scott, Gerald P. (NOAA/National Marine Fisheries Service, 2001-10)
    This report argues for greatly increased resources in terms of data collection facilities and staff to collect, process, and analyze the data, and to communicate the results, in order for NMFS to fulfill its mandate to conserve and manage marine resources. In fact, the authors of this report had great difficulty defining the "ideal" situation to which fisheries stock assessments and management should aspire. One of the primary objectives of fisheries management is to develop sustainable harvest policies that minimize the risks of overfishing both target species and associated species. This can be achieved in a wide spectrum of ways, ranging between the following two extremes. The first is to implement only simple management measures with correspondingly simple assessment demands, which will usually mean setting fishing mortality targets at relatively low levels in order to reduce the risk of unknowingly overfishing or driving ecosystems towards undesirable system states. The second is to expand existingdata collection and analysis programs to provide an adequateknowledge base that can support higher fishing mortality targets while still ensuring low risk to target and associated species and ecosystems. However, defining "adequate" is difficult, especially when scientists have not even identified all marine species, and information on catches, abundances, and life histories of many target species, and most associated species, is sparse. Increasing calls from the public, stakeholders, and the scientific community to implement ecosystem-based stock assessment and management make it even more difficult to define "adequate," especially when "ecosystem-based management" is itself not well-defined. In attempting to describe the data collection and assessment needs for the latter, the authors took a pragmatic approach, rather than trying to estimate the resources required to develop a knowledge base about the fine-scale detailed distributions, abundances, and associations of all marine species. Thus, the specified resource requirements will not meet the expectations of some stakeholders. In addition, the Stock Assessment Improvement Plan is designed to be complementary to other related plans, and therefore does not duplicate the resource requirements detailed in those plans, except as otherwise noted.
  • Marine and estuarine ecosystem and habitat classification

    Allee, Rebecca J.; Dethier, Megan; Brown, Dail; Deegan, Linda; Ford, R. Glenn; Hourigan, Thomas F.; Maragos, Jim; Schoch, Carl; Sealey, Kathleen; Twilley, Robert; et al. (NOAA/National Marine Fisheries Service, 2000-07)
    The Ecological Society of America and NOAA's Offices of Habitat Conservation and Protected Resources sponsored a workshop to develop a national marine and estuarine ecosystem classification system. Among the 22 people involved were scientists who had developed various regional classification systems and managers from NOAA and other federal agencies who might ultimately use this system for conservation and management. The objectives were to: (1) review existing global and regional classification systems; (2) develop the framework of a national classification system; and (3) propose a plan to expand the framework into a comprehensive classification system. Although there has been progress in the development of marine classifications in recent years, these have been either regionally focused (e.g., Pacific islands) or restricted to specific habitats (e.g., wetlands; deep seafloor). Participants in the workshop looked for commonalties across existing classification systems and tried to link these using broad scale factors important to ecosystem structure and function.
  • Our living oceans: report on the status of U.S. living marine resources, 6th edition

    National Marine Fisheries Service (NOAA/National Marine Fisheries Service, 2009-10)
    The National Marine Fisheries Service (NMFS) is dedicated to the stewardship of living marine resources (LMR’s). This is accomplished through science-based conservation and management, and the promotion of healthy ecosystems. As a steward, NMFS has an obligation to conserve, protect, and manage these resources in a way that ensures their continuation as functioning components of healthy marine ecosystems, affords economic opportunities, and enhances the quality of life for the American public. In addition to its responsibilities within the U.S. Exclusive Economic Zone (EEZ), NMFS plays a supportive and advisory role in the management of LMR’s in the coastal areas under state jurisdiction and provides scientific and policy leadership in the international arena. NMFS also implements international measures for the conservation and management of LMR’s, as appropriate.NMFS receives its stewardship responsibilities under a number of Federal laws. These include the Nation’s primary fisheries law, the Magnuson Fishery Conservation and Management Act. This law was first passed in 1976, later reauthorized as the Magnuson-Stevens Fishery Conservation and Management Act in 1996, and reauthorized again on 12 January 2007 as the Magnuson-Stevens Fishery Conservation and Management Reauthorization Act (MSRA). The MSRA mandates strong action to conserve and manage fishery resources and requires NMFS to end overfishing by 2010 in all U.S. commercial and recreational fisheries, rebuild all overfished stocks, and conserve essential fish habitat.
  • Interactions between sea turtles and the summer flounder trawl fishery, November, 1991 - February, 1992

    NOAA Southeast Fisheries Science Center Beaufort Laboratory; and North Carolina Division of Marine Fisheries (NOAA National Marine Fisheries Service, Southeast Fisheries Science Center, 1992-07)
  • NMFS / Interagency Working Group Evaluation of CITES Criteria and Guidelines.

    Mace, Pamela M.; Bruckner, Andy W.; Daves, Nancy K.; Field, John D.; Hunter, John R.; Kohler, Nancy E.; Kope, Robert G.; Lieberman, Susan S.; Miller, Margaret W.; Orr, James W.; et al. (National Oceanic and Atmospheric Administration, National Marine Fisheries Service, 2002)
    EXECUTIVE SUMMARY: At present, the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) criteria used to assess whether a population qualifies for inclusion in the CITES Appendices relate to (A) size of the population, (B) area of distribution of the population, and (C) declines in the size of the population. Numeric guidelines are provided as indicators of a small population (less than 5,000 individuals), a small subpopulation (less than 500 individuals), a restricted area of distribution for a population (less than 10,000 km2), a restricted area of distribution for a subpopula-tion (less than 500 km2), a high rate of decline (a decrease of 50% or more in total within 5 years or two generations whichever is longer or, for a small wild population, a decline of 20% or more in total within ten years or three generations whichever is longer), large fluctuations (population size or area of distribution varies widely, rapidly and frequently, with a variation greater than one order of magnitude), and a short-term fluctuation (one of two years or less).The Working Group discussed several broad issues of relevance to the CITES criteria and guidelines. These included the importance of the historical extent of decline versus the recent rate of decline; the utility and validity of incorporating relative population productivity into decline criteria; the utility of absolute numbers for defining small populations or small areas; the appropriateness of generation times as time frames for examining declines; the importance of the magnitude and frequency of fluctuations as factors affecting risk of extinction; and the overall utility of numeric thresh-olds or guidelines.
  • Proceedings of the Twenty-third Annual Symposium on sea turtle biology and conservation, 17 to 21 March 2003, Kuala Lumpur, Malaysia

    Pilcher, Nicolas J. (NOAA/National Marine Fisheries Service, 2006)
    The 23rd Annual Symposium on Sea Turtle Biology and Conservation was held between 17 and 21 March 2003 at The Legend Hotel in Kuala Lumpur, Malaysia, hosted by the Community Conservation Network, Hawaii, and WWF-Malaysia. The meeting was attended by slightly more than 300 participants representing 73 countries, a dramatic drop in participation from previous years brought about in no small part by the looming war in the middle east region and concerns over travel safety. For 22 years the Symposium had bee an Americas-based event, even though it is the annual gathering of the "international" sea turtle society, and with the move to Malaysia, the Symposium hoped to raise the awareness among the general public of the plight of amrine turtles in Southeast Asia, and share the enormous exspertise of the world authorities on sea turtles with this so-far underrepresented region. Adopting the thems, "Living With Turtles", the Symposium had a very personal flavour, and the smaller number of participants made it possible to make and renew acquaintances, and have time for discussion between sessions. While the travel safety concern excuse was often quoted, it was a pity, particularly to the large contingent of people who attended the event for the first time from underrepresented regions, that many of the household names linked to marine turtle biology and conservation were not present to share their knowledge and promote the global concerns on the plight of turtle populations.
  • Rescue, rehabilitation, and release of marine mammals: An analysis of current views and practices.

    St. Aubin, David J.; Geraci, Joseph R.; Lounsbury, Valerie J. (NOAA/National Marine Fisheries Service/Office of Protected Resources, 1996)
    Stranded marine mammals have long attracted public attention. Those that wash up dead are, for all their value to science, seldom seen by the public as more than curiosities. Animals that are sick, injured, orphaned orabandoned ignite a different response. Generally, public sentiment supports any effort to rescue, treat and return them to sea.Institutions displaying marine mammals showed an early interest in live-stranded animals as a source of specimens -- in 1948, Marine Studios in St. Augustine, Florida, rescued a young short-finned pilot whale (Globicephalamacrorhynchus), the first ever in captivity (Kritzler 1952). Eventually, the public as well as government agencies looked to these institutions for their recognized expertise in marine mammal care and medicine. More recently,facilities have been established for the sole purpose of rehabilitating marine mammals and preparing them for return to the wild. Four such institutions are the Marine Mammal Center (Sausalito, CA), the Research Institute forNature Management (Pieterburen, The Netherlands), the RSPCA, Norfolk Wildlife Hospital (Norfolk, United Kingdom) and the Institute for Wildlife Biology of Christian-Albrects University (Kiel, Germany).(PDF contains 68 pages.)
  • Interpreting spotted dolphin age distributions

    Barlow, Jay; Hohn, Aleta A. (NOAA/National Marine Fisheries Service/Southwest Fisheries Science Center, 1984)
    Previous work has determined the age distribution from a sample of spotted dolphins (Stenella attenuata) killed in the eastern Pacific tuna purse-seine fishery. In this paper we examine the usefulness of this age distribution for estimating natural mortality rates. The observed agedistribution has a deficiency of individuals from 5-15 years and cannot represent a stable age distribution. Sampling bias and errors in age interpretation are examined as possible causes of the "dip" in the observed age structure. Natural mortality rates are estimated for the 15+ age classes based on the assumption that these are sampled representatively. The resulting annual survival rate <D.82) is too low to allow population growth, given what is known about dolphin reproductive rates. (PDF contains 30 pages.)
  • Precision of age determination of northern offshore spotted dolphins.

    Reilly, Stephen B.; Hohn, Aleta A.; Myrick, Jr., Albert C. (NOAA/National Marine Fisheries Service/Southwest Fisheries Science Center, 1983)
    We investigated within- and between-reader precision in estimating age for northern offshore spotted dolphins and possible effects on precision from the sex and age-class of specimens. Age was estimated from patterns of growthlayer groups i n the dentine and cementum of the dolphins' teeth. Each specimen was aged at least three times by each of two persons. Two data samples were studied. The first comprised 800 of each sex from animals collected during 1973-78. The second included 45 females collected during1981. There were significant, generally downward trends through time in the estimates from multiple readings of the 1973-78 data. These trends were slight, and age distributions from last readings and mean estimates perspecimen appeared to be homogeneous. The largest factor affecting precision in the 1973-78 data set was between-reader variation. In light of the relatively high within-reader precision (trends considered), the consistentbetween-reader differences suggest a problem of accuracy rather than precision for this series. Within-reader coefficients of variation averaged approximately 7% and 11%. Pooling the data resulted i n an average coefficientof variation near 16%. Within- and between-reader precision were higher for the 1981 sample, and the data homogeneous over both factors. CVs averaged near 5% and 6% for the two readers. These results point to further refinements in reading the 1981 series. Properties of the 1981 sample may be partly responsible for greater precision: by chance there were proportionately fewer older dolphins included, and preparation and selection criteria were probably more stringent. (PDF contains 35 pages.)
  • Estimating age of spotted and spinner dolphins (Stenella attenuata and Stenella longirostris) from teeth

    Myrck, Jr., Albert C.; Hohn, Aleta A.; Sloan, Priscilla A.; Kimura, Makoto; Stanley, Drew D. (NOAA/National Marine Fisheries Service/Southwest Fisheries Science Center, 1983)
    This paper is an account of preparation and examination techniques and criteria used to estimate age in decalcified and stained tooth thin sections from spinner and spotted dolphins. A dentinal growth layer group (GLG),composed of two thin light and two thicker dark-stained layers, is deposited annually. The GLG component layers are variably visible, but the "ideal" pattern and successive thinning of dentinal GLGs are used as a guide to determine GLG limits. Age-specific thicknesses of dentinal GLGs found in Hawaiian spinner dolphin teeth seem to be applicable to teeth of spotted dolphins and can be used as an aid in locating GLG boundaries. Cementa1 GLGs are composed of a dark-stained and alightly stained layer and usually aredeposited at a rate of one per year, but may be deposited every other year or two or three times per year. Two slightly different methods of counting dentinal GLGs are presented, along with guidelines for determining whetherdentinal or cementa1 GLG counts provide the best estimate of age for a specimen. (PDF contains 23 pages.)
  • Ecosystem science capabilities required to support NOAA’s mission in the year 2020

    Murawski, S. A.; Matlock, G. C. (NOAA/National Marine Fisheries Service, 2006)
    The mission of the National Oceanic and Atmospheric Administration (NOAA) is to understand and predict changes in the Earth’s environment and conserve and manage coastal and marine resources to meet our nation’s economic, social and environmental needs (NOAA, 2004). In meeting its marine stewardship responsibilities, NOAA seeks to ensure the sustainable use of resources and balance competing uses of coastal and marine ecosystems, recognizing both their human and natural components (NOAA, 2004). Authorities for executing these responsibilities come from over 90 separate pieces of Federal legislation, each with unique requirements and responsibilities. Few of these laws explicitly mandate an ecosystem approach to management (EAM) or supporting science. However, resource managers, the science community, and increasingly, the public, are recognizing that significantly greater connectedness among the scientific disciplines is needed to support management and stewardship responsibilities (Browman and Stergiou, 2004; 2005). Neither NOAA nor any other science agency can meet the increasing demand for ecosystem science products addressing each of its mandates individually. Even if it was possible, doing so would not provide the integration necessary to solve the increasingly complex array of management issues. This focus on the integration of science and management responsibilities into an ecosystem view is one of the centerpieces of the U.S. Commission on Ocean Policy’s report (USCOP, 2004), and the Administration’s response to that report in the U.S. Ocean Action Plan (CEQ, 2004). (PDF contains 100 pages)
  • Proceedings fo the Seventeenth Annual Sea Turtle Symposium, 4-8 March 1997, Orlando, Florida, U.S.A.

    Epperly, Sheryan P.; Braun, Joanne (NOAA/National Marine Fisheries Service/Southeast Fisheries Science Center, 1998)
    The 17th Annual Sea Turtle Symposium was held at the Delta Orlando Resort in Orlando, Florida U.S.A. from March 4-8, 1997. The symposium was hosted by Florida Atlantic University, Mote Marine Laboratory, University of CentralFlorida, University of Florida, Florida Atlantic University and the Comité Nacional para la Conservación y Protecciónde las Totugas Marinas. The 17th was the largest symposium to date. A total of 720 participants registered, includingsea turtle biologists, students, regulatory personnel, managers, and volunteers representing 38 countries. In addition to the United States, participants represented Australia, Austria, the Bahamas, Bonaire, Bermuda, Brazil, Canada, Colombia, Costa Rica, Croatia, Cuba, Cyprus, Dominican Republic, Ecuador, England, Guatemala, Greece, Honduras, India, Italy, Japan, Madagascar, Malaysia, Mexico, The Netherlands, Nicaragua, Peru, Philippines, Republic of Seychelles, Scotland, Spain, Sri Lanka, Switzerland, Taiwan, Turkey, Uruguay, and Venezuela. In addition to the 79 oral, 2 video, and 120 poster presentations, 3 workshops were offered: Selina Heppell (Duke University Marine Laboratory) provided “Population Modeling,” Mike Walsh and Sam Dover (Sea World-Orlando) conducted “Marine Turtle Veterinary Medicine” and “Conservation on Nesting Beaches” was offered by Blair Witherington and David Arnold (Florida Department of Environmental Protection). On the first evening, P.C.H. Pritchard delivered a thoughtful retrospect on Archie Carr that showed many sides of a complex man who studied and wrote about sea turtles. It was a presentation that none of us will forget. The members considered a number of resolutions at the Thursday business meeting and passed six. Five of these resolutions are presented in the Commentaries and Reviews section of Chelonian Conservation and Biology 2(3):442-444 (1997).The symposium was fortunate to have many fine presentations competing for the Archie Carr Best Student Presentations awards. The best oral presentation award went to Amanda Southwood (University of British Columbia) for “Heart rates and dive behavior of the leatherback sea turtle during the internesting interval.” The two runners-up were Richard Reina (Australian National University) for “Regulation of salt gland activity in Chelonia mydas” and Singo Minamikawa (Kyoto University) for “The influence that artificial specific gravity change gives to diving behavior of loggerhead turtles”. The winner of this year’s best poster competition was Mark Roberts (University of South Florida) for his poster entitled “Global population structure of green sea Turtles (Chelonia mydas) using microsatelliteanalysis of male mediated gene flow.” The two runners-up were Larisa Avens (University of North Carolina-ChapelHill) for “Equilibrium responses to rotational displacements by hatchling sea turtles: maintaining a migratory heading in a turbulent ocean” and Annette Broderick (University of Glasgow) for “Female size, not length, is a correlate of reproductive output.” The symposium was very fortunate to receive a matching monetary and subscription gift from Anders J. G. Rhodin of the Chelonian Research Foundation. These enabled us to more adequately reward the fine work of students. The winners of the best paper and best poster awards received $400 plus a subscription to Chelonian Conservation and Biology. Each runner up received $100.The symposium owes a great debt to countless volunteers who helped make the meeting a success. Those volunteersinclude: Jamie Serino, Alan Bolton, and Karen Bjorndal, along with the UF students provided audio visual help, JohnKeinath chaired the student awards committee, Mike Salmon chaired the Program Commiteee, Sheryan Epperly and Joanne Braun compiled the Proceedings, Edwin Drane served as treasurer and provided much logistical help, Jane Provancha coordinated volunteers, Thelma Richardson conducted registration, Vicki Wiese coordinated food and beverage services, Jamie Serino and Erik Marin coordinated entertainment, Kenneth Dodd oversaw student travel awards, Traci Guynup, Tina Brown, Jerris Foote, Dan Hamilton, Richie Moretti, and Vicki Wiese served on the time and place committee, Blair Witherington created the trivia quiz, Tom McFarland donated the symposium logo, Deborah Crouse chaired the resolutions committee, Pamela Plotkin chaired the nominations committee, Sally Krebs, Susan Schenk, and Larry Wood conducted the silent auction, and Beverly and Tom McFarland coordinated all 26 vendors. Many individuals from outside the United States were able to attend the 17th Annual Sea Turtle Symposium thanks to the tireless work of Karen Eckert, Marydele Donnelly, and Jack Frazier in soliciting travel assistance for a number of international participants. We are indebted to those donating money to the internationals’ housing fund (Flo Vetter Memorial Fund, Marinelife Center of Juno Beach, Roger Mellgren, and Jane Provancha). We raise much of our money for international travel from the auction; thanks go to auctioneer Bob Shoop, who kept our auction fastpacedand entertaining, and made sure the bidding was high.The Annual Sea Turtle Symposium is unequaled in its emphasis on international participation. Through international participation we all learn a great deal more about the biology of sea turtles and the conservation issues that sea turtles face in distant waters. Additionally, those attending the symposium come away with a tremendous wealth of knowledge, professional contacts, and new friendships. The Annual Sea Turtle Symposium is a meeting in which pretenses are dropped, good science is presented, and friendly, open communication is the rule. The camaraderie that typifies these meetings ultimately translates into understanding and cooperation. These aspects, combined, have gone and will go a long way toward helping to protect marine turtles and toward aiding their recovery on a global scale. (PDF contains 342 pages)
  • Population assessment of the vermilion snapper, Rhomboplites aurorubens, from the Southeastern United States

    Manooch III, Charles S.; Potts, Jennifer C.; Burton, Michael L.; Vaughan, Douglas S. (NOAA/National Marine Fisheries Service/Southeast Fisheries Science Center, 1998)
    Changes in the age structure and population size ofvermilion snapper, Rhornboplites aurorubens, from North Carolina through the Florida Keys were examined using records of landings and size frequencies of fish from commercial, recreational, and headboat fisheries from 1986-1996. Population size in numbers at age was estimated for each year by applying separable virtual population analysis (SVPA) to the landings in numbers at age. SVPA was used to estimate annual, age-specific fishing mortality (F) for four levels of natural mortality (M = 0.20, 0.25, 0.30,and 0.35). Although landings of vermilion snapper for the three fisheries have declined, minimum fish size regulations have resulted in an increase in the mean size of fish landed. Age at entry and age at full recruitment were age-1 andage-3 fDr 1986-1991, compared with age-1 and age-4, respectively, for 1992-1996. Levels of mortality from fishing (F) ranged from 0.38 - 0.61 for the entire period. Current spawning potential ratio (SPR) is 21%or 27% depending on the natural mortality estimate. SPR could be raised to 30% or 40% with a reduction in F, or by increasing the age at entry to the fisheries. The latter could be enhanced now if fishermen, particularly recreational, comply with minimum size regulations. However, released fish mortality, modeled in the assessment at 27%, will continue to make the achievement of 30%and 40% SPR more difficult. (PDF contains 63 pages)
  • Population assessment of two stocks of white grunt, Haemulon plumieri, from the southeastern coast of the United States

    Potts, Jennifer C. (NOAA/National Marine Fisheries Service/Southeast Fisheries Science Center, 2000)
    Changes in the age structure and population size of whitegrunt, Haemulon plumieri, from North Carolina through the Florida Keys were examined using records of landings and size frequencies of fish from commercial, re~reational, and headboat fisheries from 1986-1998. Data were stratified into two geographical areas: North Carolina and South Carolina; and southeast Florida. Population size in numbers at age was estimated for each year and geographical area by applying an uncalibrated separable virtual population analysis (SVPA) to the landings in numbers at age. Acalibrated virtual population analysis, FADAPT, was also run for data from North Carolina and South Carolina. SVPA and FADAPT were used to estimate annual, age-specific fishing mortality (F) for four levels of natural mortality (M = 0.20, 0.25, 0.30, and 0.35). The best estimate of M for white grunt is 0.30. Landings of white grunt in the Carolinas for the three fisheries have generally decreased in recent years, but have held fairly steady for the species in southeast Florida. Age at entry and age atfull recruitment were age-1 and age-4 for the Carolinas, and age-l and age-3 for southeast Florida. With M = 0.30, levels of fishing mortality (F) on the fully-recruited ages were 0.23 for the Carolinas and 0.33 for southeast Florida. Spawning potential ratio (SPR) at M = 0.30 was 57% for the Carolinas and 61% for southeast Florida, which indicates that the species, by definition, has not been over-exploited by fishing. The results of this assessment of the white grunt population off the Carolinas agree with the recent F/FMSY analysis of white grunt (Anonymous, 1999).(PDF contaons 72 pages)
  • Assessment of cobia, Rachycentron canadum, in the waters of the U.S. Gulf of Mexico

    Williams, Erik H. (NOAA/National Marine Fisheries Service/Southeast Fisheries Science Center, 2001)
    This assessment applies to cobia (Rachycentron canadum) located in the territorial waters of the U.S. Gulf of Mexico. Separation of the Gulf of Mexico and Atlantic Ocean is defined by the seaward extension of the Dade/Monroe county line in south Florida. Mixing of fish between the Atlantic and Gulf of Mexico occurs in the Florida Keys during winter months. Cobia annually migrate north in early spring in the Gulf to spawning grounds in the northern Gulf of Mexico, returning to the Florida Keys by winter.Catches of cobia in the Gulf of Mexico are dominated by recreational landings, accounting for nearly 90% of the total. Since 1980, the landings of cobia in the recreational fishery have remained fairly stable at around 400-600 mt with a slight peak of 1,014 mt in 1997. The recreational fishery was estimated to have landed 471 mt in 2000. The landings from the commercial fishery have shown a steady increase from 45 mt in 1980 to a peak of 120 mt in 1994, followed by a decline to 62 mt in 2000.The previous assessment of cobia occurred in 1996 using a virtual population analysis (VPA) model. For this analysis a surplus-production model (ASPIC) and a forward-projecting, age-structured population model programmed in the AD Model Builder (ADMB) software were applied to cobia data from the Gulf of Mexico. The primary data consisted of four catch-per-unit-effort (CPUE) indices derived from the Marine Recreational Fisheries Statistics Survey (MRFSS) (1981-1999), Southeast region headboat survey (1986-1999), Texas creel survey (1983-1999), and shrimp bycatch estimates (1980-1999). Length samples were available from the commercial (1983-2000) and recreational (1981-2000) fisheries.The ASPIC model applied to the cobia data provided unsatisfactory results. The ADMB model fit described the observed length composition data and fishery landings fairly well based on graphical examination of model residuals. The CPUE indices indicated some disagreement for various years, but the model fit an overall increasing trend from 1992-1997 for the MRFSS, headboat, and Texas creel indices. The shrimp bycatch CPUE was treated as a recruitment index in the model. The fit to these data followed an upward trend in recruitment from 1988-1997, but did not fit the 1994-1997 data points very well. This was likely the result of conflicting information from other data sources.Natural mortality (M) for cobia is unknown. As a result, a range of values for M from 0.2-0.4, based on longevity and growth parameters, were selected for use in the age-structured model. The choice of natural mortality appears to greatly influence the perceived status of the population. Population status as measured by spawning stock biomass in the last year relative to the value at maximum sustainable yield (SSB2000/SSBMSY), spawning stock biomass in the last year relative to virgin spawning stock biomass (SSB2000/S0), and static spawning stock biomass per recruit (SSBR) all indicate the population is either depleted, near MSY, or well above MSY depending on the choice of M. The variance estimates for these benchmarks are very large and in most cases ranges from depleted to very healthy status. The only statement that can be made with any degree of certainty about cobia in the Gulf of Mexico is that the population has increased since the 1980s. (PDF contains 61 pages)
  • Bag and size limit analyses for red drum in Northern and Southern Regions of the U.S. Atlantic

    Vaughan, Douglas S.; Carmichael, John T. (NOAA/National Marine Fisheries Service/Southeast Fisheries Science Center, 2001)
    Assessments of the Atlantic red drum for the northern (North Carolina and north) and southern (South Carolina through east coast of Florida) regions along the U. S. Atlantic coast were recently completed. The joint Red Drum Technical Committee (SAFMC/ASMFC) selected the most appropriate catch matrix (incorporating an assumption on size of recreationally-released fish), selectivity of age 3 relative to age 2, and virtual population analysis (FADAPT). Given gear- and age-specific estimates of fishing mortality (F) for the 1992-1998 period, analyses weremade of potential gains in escapement through age 4 and static spawning potential ratio (SPR) from further reductions in fishing mortality due to changes in slot and bag limits. Savings from bag limits were calculated given a particular slot size for the recreational fishery, with no savings for the commercial fisheries in the northern region due to their being managed primarily through a quota. Relative changes in catch-at-age estimates were used to adjust age-specific F and hence calculated escapement through age 4 and static SPR. Adjustment was made with the recreational savings to account for release mortality (10%, as in the stock assessment). Alternate runs for thenorthern region commercial fishery considered 25% release mortality for lengths outside the slot (instead of 0% for the base run), and 0% vs. 10% gain or loss across legal sizes in F. These results are summarized for ranges of bag limits with increasing minimum size limit (for fixedmaximum size), and with decreasing maximum size limit (for fixed minimum size limit). For the southern region, a bag limit of one-fish per angler trip would be required to attain the stated target of 40% static SPR if the current slot limit were not changed. However, for the northernregion, a bag limit of one-fish per angler trip appears to be insufficient to attain the stated target of 40% static SPR while maintaining the current slot limit. (PDF contains 41 pages)
  • Characterization of North Carolina commercial fisheries with occasional interactions with marine mammals

    Steve, Carolyn; Gearhart, Jeff; Borggaard, Diane; Sabo, Lees; Hohn, Aleta A. (NOAA/National Marine Fisheries Service/Southeast Fisheries Science Center, 2001)
    In accordance with the Marine Mammal Protection Act (MMPA, 16 U.S.c. et seq.), the National Marine Fisheries Service (NMFS) is required to publish an annual List of Fisheries (LOF) which categorizes U.S. commercial fisheries based on their level of interaction with marine mammals. The objective of this document is to provide a characterization of the six 2001 MMPA Category II commercial fisheries (i.e.,those with occasional interactions with marine mammals) in North Carolina (NC). This report outlines the history, fishing method and gear configurations (using the U.S. system of measurement), primary target species, temporal and spatial characteristics including trip and landing statistics, and monthly variations in species composition for each fishery for a five-year period (1995 - 1999). (PDF contains 63 pages)
  • Preliminary guide to the indentification of the early life history stages of Callionymid fishes of the Western Central Atlantic

    Powell, Allyn B.; Greene, Michael (NOAA/National Marine Fisheries Service/Southeast Fisheries Service Center, 2000)
    Callionymidae, along with the Draconettidae and Gobiesocidae, previously were placed in the order Gobiesociformes (Allen, 1984). Recently, Nelson (1994) placed the Callionymidae and Draconettidae in the percifonn suborder Callionymoidei. The family is represented by three species in the western central North Atlantic Ocean, Diplogrammus pauciradiatus, Paradiplogrammus bairdi and Foetorepus agassizi (Davis, 1966; Robins and Ray, 1986). A detailed review ofthe family including early life history infonnation is given by Houde (1984) and Watson (1996). (PDF contains 11 pages)
  • Stock assessment of loggerhead and leatherback sea turtles and An assessment of the impact of the pelagic longline fishery on the loggerhead and leatherback sea turtles of the Western North Atlantic

    National Marine Fisheries Service Southeast Fisheries Science Center (NOAA/National Marine Fisheries Service/Southeast Fisheries Science Center, 2001)
    On September 7, 2000 the National Marine Fisheries Service announced that it was reinitiating consultation under Section 7 of the Endangered Species Act on pelagic fisheries for swordfish, sharks, tunas, and billfish. 1 Bycatch of a protected sea turtle species is considered atake under the Endangered Species Act (PL93-205). On June 30, 2000 NMFS completed a Biological Opinion on an amendment to the Highly Migratory Pelagic Fisheries Management Plan that concluded that the continued operation of the pelagic longline fishery was likely to jeopardize the continued existence of loggerhead and leatherback sea turtles.2 Since that Biological Opinion was issued NMFS concluded that further analyses of observer data andadditional population modeling of loggerhead sea turtles was needed to determine more precisely the impact of the pelagic longline fishery on turtles. 3,4 Hence, the reinitiation of consultation.The documents that follow constitute the scientific review and synthesis of information pertaining to the narrowly defined reinitiation of consultation: the impact of the pelagic longline fishery on loggerhead and leatherback sea turtles The document is in 3 parts, plus 5 appendices.Part I is a stock assessment of loggerhead sea turtles of the Western North Atlantic. Part II is a stock assessment of leatherback sea turtles of the Western North Atlantic. Part III is an assessment of the impact of the pelagic longline fishery on loggerhead and leatherback sea turtlesof the Western North Atlantic.These documents were prepared by the NMFS Southeast Fisheries Science Center staff and academic colleagues at Duke University and Dalhousie University. Personnel involved from the SEFSC include Joanne Braun-McNeill, Lisa Csuzdi, Craig Brown, Jean Cramer, Sheryan Epperly, Steve Turner, Wendy Teas, Nancy Thompson, Wayne Witzell, Cynthia Yeung, and also Jeff Schmid under contract from the University or Miami. Our academic colleagues, Ransom Myers, Keith Bowen, and Leah Gerber from Dalhousie University and Larry Crowder and Melissa Snover from Duke University, also recipients of a Pew Charitable Trust Grant for aComprehensive Study of the Ecological Impacts of the Worldwide Pelagic Longline Industry, made significant contributions to the quantitative analyses and we are very grateful for their collaboration. We appreciate the reviews of the stock definition sections on loggerheads andleatherbacks by Brian Bowen, University of Florida, and Peter Dutton, National Marine Fisheries Service Southwest Fisheries Science Center, respectively, and the comments of the NMFS Center of Independent Experts reviewers Robert Mohn, Ian Poiner, and YouGan Wang on the entire document. We also wish to acknowledge all the unpublished data used herein which were contributed by many researchers, especially the coordinators and volunteers of the nesting beach surveys and the sea turtle stranding and salvage network and the contributors to the Cooperative Marine Turtle Tagging Program. (PDF contains 349 pages)

View more