Show simple item record

dc.contributor.authorGarcía-Machado, E.
dc.contributor.authorChevalier, P.
dc.contributor.authorSolignac, M.
dc.date.accessioned2013-01-26T20:53:40Z
dc.date.available2013-01-26T20:53:40Z
dc.date.issued2003en
dc.identifier.citationMarine Biology, 144, p. 147-152en
dc.identifier.issn0025-3162*
dc.identifier.urihttp://hdl.handle.net/1834/4569
dc.description.abstractThe hamlets are a group of vividly colored fish species of the Serranidae family differentiated only by the color pattern of the body. Although there are divergent views about hamlet taxonomy, experimental and field observations have shown a strong assortative mating, justifying a species status for the different color morphs. Here we analyze the level of evolutionary divergence among six species in respect of mitochondrial DNA, with a view to contrasting the pattern observed with color partitions and previous results obtained with isozymes. The estimated molecular distance among species was low and of the same magnitude as nucleotide diversity within species. Consequently, the net distance and hence the time of divergence between taxa was virtually zero in most comparisons. Although not critically tested, haplotype distribution showed no clear phylogeographic structure,and in many cases the most closely related haplotypes were found at different geographical locations. The absence of differentiated clades between species, based on mitochondrial DNA and isozyme analysis, may have one of two possible origins: a very recent differentiation of species or a lack of absolute barriers to gene flow.However, the available information is insufficient to determine the effect of one or the other, and may require supplementary information from other genes as well as experiments on hybrid fertility. Finally, based on some biological evidence, we suggest that self-fertilization may be an interesting phenomenon to be tested in Hypoplectrus.en
dc.language.isoenen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/en
dc.titleLack of mtDNA differentiation among hamlets (Hypoplectrus, Serranidae).en
dc.title.alternativeLa falta de diferenciación del ADNmt entre vacas (Hypoplectrus, Serranidae)es
dc.typeJournal Contribution*
dc.bibliographicCitation.endpage152en
dc.bibliographicCitation.stpage147en
dc.bibliographicCitation.titleMarine Biologyen
dc.bibliographicCitation.volume144en
dc.description.statusPublisheden
dc.description.othervacases
dc.relation.doi10.1007/s00227-003-1174-9en
dc.relation.referencesAcero A, Garzó n J (1994) Descripción de una nueva especie de Hypoplectrus (Pisces: Serranidae) del Caribe occidental y comentarios sobre las especies colombianas del ge´nero. An Inst Invest Mar Punta Betı´n 23:4–14 Albertson RC, Markert JA, Danley PD, Kocher TD (1999) Phylogeny of a rapidly evolving clade: the cichlid fishes of Lake Malawi, East Africa. Proc Natl Acad Sci USA 96:5107–5110 Beebe W, Tee-Van J (1933) Field book of the shore fishes of Bermuda. Putnam, New York , pp 134–135 Breder ChM (1929) Field book of marine fishes of the Atlantic coast from Labrador to Texas. Putnam, New York , pp 164– 165 Clark E (1959) Functional hermaphroditism and self-fertilization in serranid fish. Science 129:215–216 Clement M, Posada D, Crandall KA (2000) TCR: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660 Cole KS, Noakes DLG (1997) Gonadal development and sexual allocation in mangrove killifish Rivulus marmoratus (Pisces, Atherinomorpha) Copeia 1997:596–600 Doi M, Matsuda M, Tomaru M, Matsubayashi H, Oguma Y (2001) A locus for female discrimination behavior causing sexual isolation in Drosophila. Proc Natl Acad Sci USA 98:6714–6719 Domeier ML (1994) Speciation in the serranid fish Hypoplectrus. Bull Mar Sci 54:103–141 Graves JE, Rosenblatt RH (1980) Genetic relationships of the color morphs of the serranid fish Hypoplectrus unicolor. Evolution 34:240–245 Guitart D (1977) Sinopsis de los peces marinos de Cuba, vol III. Acad Cienc Cuba Humman P (1994) Reef fish identification, 2nd edn. New World Publications, Jacksonville, Fla., pp 111–125 Jordan DS, Everman BW (1896) The fishes of north and middle America, vol 1. Smithsonian Institution, United States National Museum, Washington, D.C., pp 1189–1194 Kimura M (1980) A simple method for estimating evolutionary rate of base substitution through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 Kocher TD, Thomas WK, Meyer A, Edwards SV, Pa¨ a¨bo S, Villablanca FX, Wilson AC (1989) Dynamics of mitochondrial DNA evolution in animals: amplification and sequencing with conserved primers. Proc Natl Acad Sci USA 86:6196–6200 Kumar S, Tamura K, Jakobsen IB, Nei M (2001) MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 Mallet J, Joron M (1999) Evolution of diversity in warning color and mimicry: polymorphisms, shifting balance, and speciation. Annu Rev Ecol Syst 30:201–233 McMillan WO, Palumbi SR (1997) Rapid rate of control–region evolution in Pacific butterflyfishes (Chaetodontidae). J Mol Evol 45:473–84 McMillan WO, Weight LA, Palumbi SR (1999) Color pattern evolution, assortative mating, and genetic differentiation in brightly colored butterflyfishes (Chaetodontidae). Evolution 53:247–260 Meyer A, Kocher TD, Basasibwaki P, Wilson AC (1990) Monophyletic origin of Lake Victoria cichlid fishes suggested by mitochondrial DNA sequences. Nature 347:550–553 Moran P, Kornfield I (1993) Retention of ancestral polymorphism in the Mbuna species flock (Teleostei: Cichlidae) of Lake Malawi. Mol Biol Evol 10:1015–1029 Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York Palumbi SR, Martin AP, Romano S, McMillan WO, Stice L, Grabowsqui G (1991) The simple fool’s guide to PCR. ver. 2.0. University of Hawaii, Honolulu, HI Parker A, Kornfield I (1997) Evolution of the mitochondrial DNA control region in the mbuna (Cichlidae) species flock of the Lake Malawi, East Africa. J Mol Evol 45:70–83 Poey F (2000) Ictiologı´a cubana, vol I. Imagen contempora´ nea, Coleccio´ n Biblioteca de Cla´ sicos Cubanos, No. 7 Posada D., Crandall KA, Templeton AR (2000) GEODIS: a program for the cladistic nested analysis of the geographical distribution of genetic haplotypes. Mol Ecol 9:487–488 Randall JE (1967) Food habits of the reef fishes of the West Indies. Stud Trop Oceanogr 5:665–847 Randall JE (1968) Caribbean reef fishes. Trop Fish Hobbyist, N. J. Rocha-Olivares A, Kimbrell CA, Eitner BJ, Vetter RD (1999) Evolution of a mitochondrial cytochrome b gene sequence in the species-rich genus Sebastes (Teleostei, Scorpaenidae) and its utility in testing the monophyly of the subgenus Sebastomus. Mol Phylogenet Evol 11:426–440 Rosenthal E, Coutelle O, CraxtonM(1993) Large-scale production of DNA sequencing templates by microtitre format PCR. Nucleic Acids Res 21:173–174 Schneider S, Roessli D, Excoffier L (2000) Arlequin ver 2.000: a software for population genetics data analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland Soto CG, Leatherland JF, Noakes DLG (1992) Gonadal histology in the self-fertilizing hermaphroditic fish Rivulus marmoratus Pisces Cyprinodontidae. Can J Zool 70:2338–2347 Takahata N, Slatkin M (1984) Mitochondrial gene flow. Proc Natl Acad Sci USA 81:1764–1767 1Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633 Templeton AR, Routman E, Phillips CA (1995) Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Amblystoma tigrinum. Genetics 140:767–782 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24:4876–4882 Thresher R (1978) Polymorphism, mimicry and evolution of the hamlets (Hypoplectrus, Serranidae). Bull Mar Sci 28:345–353 Via S (2001) Sympatric speciation in animals: the ugly duckling grows up. Trends Ecol Evol 16:381–390en
dc.subject.asfamtDNAen
dc.subject.asfaMarine fishen
dc.subject.asfaGenetic diversityen
dc.type.refereedRefereeden
dc.type.specifiedArticleen
refterms.dateFOA2021-01-30T18:48:04Z


Files in this item

Thumbnail
Name:
A-30-Lack of mtDNA differentia ...
Size:
205.7Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc/3.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc/3.0/