Variación espacio-temporal de grupos morfo-funcionales de macroalgas en pastos marinos al norte de Ciego de Ávila, Cuba
dc.contributor.author | Avila Alonso, D. | |
dc.contributor.author | Guimaraes Bermejo, M. | |
dc.contributor.author | Cárdenas Ortiz, R. | |
dc.date.accessioned | 2013-07-19T19:42:21Z | |
dc.date.available | 2013-07-19T19:42:21Z | |
dc.date.issued | 2013 | en |
dc.identifier.citation | Revista de Investigaciones Marinas, 33 (1), p. 14-22 | es |
dc.identifier.issn | 1991-6089 | * |
dc.identifier.uri | http://hdl.handle.net/1834/4929 | |
dc.description.abstract | Se determinó la variación espacio-temporal de la biomasa de los grupos morfo-funcionales de macroalgas y su relación con las variables ambientales: temperatura, salinidad, oxígeno disuelto y precipitaciones en dos localidades (laguna y playa) de pastizales al Norte de Ciego de Ávila desde marzo de 2010 a febrero de 2011. Las colectas se realizaron utilizando marco cuadrado de 25 cm de lado y se tomaron 15 unidades de muestreo en cada sitio. Se determinaron cinco grupos morfo- funcionales: foliosas y globosas, coriáceas, filamentosas, corticadas y calcáreas articuladas, presentando variaciones espacio- temporales los dos últimos. La laguna tuvo menor diversidad algal (13 géneros) y mayor biomasa total determinado por el aporte de las calcáreas articuladas, mientras que la playa fue más diversa (26 géneros) y menos productiva. Los picos máximos se presentaron en verano debido al enriquecimiento producto del arrastre por las lluvias y los mínimos en primavera. Las variaciones espaciales pudieron estar dadas por las diferencias del régimen hidrodinámico, los nutrientes y el sustrato. La variación temporal de la biomasa de las corticadas y filamentosas mostró correlación con valores elevados de salinidad y oxígeno disuelto y las calcáreas articuladas y coriáceas lo fueron para valores elevados de temperatura y precipitaciones. | es |
dc.description.abstract | The biomass spatio-temporal variations of different macroalgae morpho-functional groups were determined as well as their relation with environmental variables such as: salinity, temperature, dissolved oxygen and precipitations in two localities (lagoon and beach) of the seagrass in the northern coast of Ciego de Avila, from March 2010 to February 2011. The samples were collected using a 25-cm-square and 15 sampling units were placed per site. Up to five morpho-functional groups were identified: sheet, thick-leathery, filamentous, coarsely-branched and jointed-calcareous. The last two groups showed spatio- temporal variations. The lagoon showed comparatively low diversity (13 macroalgae genera), but high biomass values owing to the calcareous articulate contributions. On the contrary, the sandy beach exhibited higher diversity (26 genera) but lower productivity. The highest biomass values were recorded in summer because of an increased nutrient level from precipitations and lowest figures during spring. The spatial variations were best explained by the differences in hydrodynamic regimes, nutrients and substratum between sampling sites. The temporal biomass variations of coarsely-branched and filamentous were correlated with high salinity and dissolved oxygen; meanwhile jointed-calcareous and thick-leathery group’s biomasses were correlated with high temperatures and precipitations. | en |
dc.language.iso | es | en |
dc.rights.uri | http://creativecommons.org/licenses/by-nc/3.0/ | en |
dc.title | Variación espacio-temporal de grupos morfo-funcionales de macroalgas en pastos marinos al norte de Ciego de Ávila, Cuba | es |
dc.type | Journal Contribution | * |
dc.bibliographicCitation.endpage | 22 | en |
dc.bibliographicCitation.issue | 1 | en |
dc.bibliographicCitation.stpage | 14 | en |
dc.bibliographicCitation.title | Revista de Investigaciones Marinas | es |
dc.bibliographicCitation.volume | 33 | en |
dc.description.status | Published | en |
dc.description.other | morpho-functional group | en |
dc.description.other | macroalgae | en |
dc.relation.references | Alcolado, P.M. (2006) Diversidad, utilidad y estado de conservación de los biotopos marinos. En R. Claro (Ed.), La Biodiversidad Marina de Cuba (pp. 23-61). Cuba: Instituto de Oceano- logía, Ministerio de Ciencia, Tecnología y Medio Ambiente. Alcolado, P.M., García, E.E., Espinosa, N., Eds. (1999) Protecting biodiversity y establishing sustainable development in the Sabana- Camagüey ecosystem. Global Environmental Facility (GEF) / United Nations Development Program (UNDP) Project CUB/92/G31 Sabana-Camagüey, Cuba, 145 pp. Alfonso, Y., Martínez Daranas, B. (2009) Variaciones espacio-temporales en la cobertura en un área costera al Norte de Ciudad de La Habana. Rev. Invest. Mar., 30(3), 187-201. APHA. (1992) Standard methods for the examination of water and wastewater. 18th ed. American Public Health Association, Washington, DC. USA, 1268 pp. Bach, S. (1979) Standing crop, growth, and production of calcareous siphonales in a south Florida lagoon. Bull. Mar. Sci., 29, 191–201. Benz, M., Eiseman, N.J., Gallaher, E.E. (1979) Seasonal occurrence and variation in stan- ding crop of a drift algae community in the Indian River, Florida. Bot. Mar., 22, 413–420. Biber, P.D., Irlandi, E.A. (2006) A temporal and spatial dynamics of macroalgal communities along an anthropogenic salinity gradient in Biscayne Bay (Florida, USA) Aquat. Bot., 85, 65–77. Cabrera, R., Moreira, A., Primelles, J. (2006) Distribución de la biomasa de macroalgas en la bahía de Nuevitas, Cuba. Rev. Invest. Mar., 27(1), 19-29. Conover, J. (1964) The ecology, seasonal periodicity, and distribution of benthic plants in some Texas lagoons. Bot. Mar., 7, 4–41. den Hartog, C., Phillips, R.C. (2001) Common structures and properties of seagrasses beds fringing the coasts of the world. En K. Reise (ed.), Ecological comparisons of sedimentary shores (pp. 195-212). Ecological Studies, Ale- mania: Springer-Verlag Berlin Heidelberg. Fong, P., Boyer, K.E., Kamer, K., Boyle, K.A. (2003) Influence of initial tissue nutrient status of tropical marine algae on response to nitrogen and phosphorus additions. Mar. Ecol. Prog. Ser., 262, 111–123. Garrigue, C. (1991) Biomass and production of two Halimeda species in the southwest New Caledonian lagoon. Oceanol. Acta, 14 (6), 581–588. Hemminga, M.A., Duarte, C.M. (2000) Seagrass Ecology. University of Cambridge, New York, USA, 298 pp. Hillis-Colinvaux, L. (1990) Marine biodiversity: comunities of the land-ocean interface, with emphasis on the stressed coralgal (coral) reef system. Report of a Meeting of the Marine Biological Diversity Working Group, Woods Hole Oceanog. Inst. Tech. Rep. 9013,16-17. Hamm, D., Humm, H.J. (1976) Benthic algae of the Anclote estuary. 2. Bottom dwelling species. Fla. Sci., 39, 209–229. Josselyn, M. (1977) Seasonal changes in the distribution and growth of Laurencia poitei in a subtropical lagoon. Aquat. Bot., 3, 217– 229. Littler, D.S., Littler, M.S. (1984) Relationships between macoalgal functional form groups and substrata stability in a subtropical rocky-intertidal system. J. Exp. Mar. Ecol., 74, 13-34. Littler, D.S., Littler, M.S. (2000) Caribbean Reef Plants. An identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. Offshore Graphics, Inc., USA, 542pp. Littler, M.M., Littler, D.S. (1980) The evolution of thallus form and survival strategies in benthic marine macroalgae: field and laboratory test of a functional form model. Am. Nat., 116 (1), 25- 44. Littler, M.M., Littler, D.S. (1983) Heteromorphic life- history strategies in the brown alga Scytosiphon lomentaria (Lyngb.) Link. J. Phycol., 19, 425-431. Martínez-Daranas, B.R. (2007) Características y esta- do de conservación de los pastos marinos en áreas de interés del archipiélago Sabana- Camagüey. Tesis de Doctorado. Universidad de La Habana. McCune, B., Mefford M.J. (1999) Multivariate Analysis of Ecological Data. Versión 4.0. MjM Software, Gleneden Beach, Oregon. USA. Moreira, A.R., Armenteros, M., Gómez, M., León, A.R., Cabrera, R., Castellanos, M.E., Muñoz, A., Suárez, A.M. (2006) Variation of macroalgae biomass in Cienfuegos Bay, Cuba. Rev. Invest. Mar., 27(1), 3-12. O’Neal, S., Prince, J.S. (1982) Relationship between seasonal growth, photosynthetic production and apex mortality of Caulerpa paspaloides. Mar.Biol., 72, 61–67. O’Neal, S., Prince, J.S. (1988) Seasonal effects of light, temperature, nutrient concentration and salinity on the physiology and growth of Caulerpa paspaloides. Mar. Biol., 97, 17–24. StatSoft, Inc. 2004. STATISTICA (data analysis software system), version 7.0 www.statsoft.com. Steneck, R.S., Dethier, M.N. (1994) A functional group approach to the structure of algal- dominated communities. Oikos 69, 476-498. Suárez, A.M. (1989) Ecología del macrofitobentos de la plataforma de Cuba. Rev. Invest. Mar., 10(3), 187-206. Suárez, A.M. (2006) El macrofitobentos, reino vegetal. En R. Claro, (Ed.), La Biodiversidad Marina de Cuba (pp. 18-22), Cuba: Instituto de Oceanología, Ministerio de Ciencia, Tecnología y Medio Ambiente. Suárez, A.M., Martínez-Daranas, B., Alfonso, Y. (in litt.) Catálogo de macroalgas cubanas (tercera revisión). Laboratorio de Ecología. Centro de Investigaciones Marinas, Universidad de la Habana. Taylor, W.R. (1960) Marine algae of the eastern tro- pical and subtropical coast of the America. University of Michigan Press, Ann Arbor, USA, 267pp. Ter Braak, C.J.F. (1986) Canonical correspondence analysis: a new eigenvector technique for 22 multivariate direct gradient analysis. Ecology., 67, 1167-1179. Thomsen, M. (2009) Ecologycal impacts of estuarine drift algae: a meta-analysis. University Perth, WA, USA. Disponible en: http://www.vegfunction.net/wg/66/66.98pp.pdf. [Consultado en Marzo de 2011). Vales, M., Álvarez, A., Montes, L., Ávila, A. (Eds.) (1998) Estudio nacional sobre la diversidad biológica en la República de Cuba. Programa de Naciones Unidas para el Medio Ambiente. Centro Nacional de Biodiversidad. Instituto de Ecología y Sistemática. CITMA, La Haba- na, 480 pp. Virnstein, R., Carbonara, P.A. (1985) Seasonal abun- dance and distribution of drift algae and seagrasses in the mid-Indian River Lagoon, Florida. Aquat. Bot., 23, 67–82. Wefer, G. (1980) Carbonate production by algae Halimeda, Penicillus and Padina. Nature, 285, 323–324. Zar, J.H. (1999) Biostatistical analysis (4th ed.). Prentice-Hall, New Jersey, 663 pp. Zayas, C.R., Suárez, A.M., Ocaña, F.A. (2006) Abundancia y diversidad de especies del fito- bentos de playa Guardalavaca, Cuba. Rev. Invest. Mar., 27(2), 87-93. | en |
dc.subject.asfa | Biomass | en |
dc.subject.asfa | Morphometric analysis | en |
dc.subject.asfa | Algae | en |
dc.subject.asfa | Seagrass | en |
dc.subject.asfa | Environmental factors | en |
dc.type.refereed | Refereed | en |
dc.type.specified | Article | en |
refterms.dateFOA | 2021-01-30T18:48:03Z |