Show simple item record

dc.contributor.authorPerera Bravet, E.
dc.date.accessioned2014-03-05T18:50:47Z
dc.date.available2014-03-05T18:50:47Z
dc.date.issued2012en
dc.identifier.urihttp://hdl.handle.net/1834/5364
dc.description.abstractLas langostas espinosas (Crustacea: Decapoda: Palinuridae) habitan las zonas bajas de las plataformas insulares o continentales, fundamentalmente en ambientes rocosos o de arrecifes, aunque pueden encontrarse también a gran profundidad. Estos crustáceos son uno de los recursos pesqueros más importantes en todo el mundo por su altísimo valor comercial (Lipcius y Eggleston, 2000). De las aproximadamente 47 especies que existen, 33 soportan pesquerías comerciales siendo Panulirus, Palinurus y Jasus los géneros más importantes desde el punto de vista comercial. Las langostas del género Panulirus son típicas de regiones tropicales y constituyen el 82,2% de las capturas mundiales de palinúridos (Lipcius y Eggleston, 2000). La especie Panulirus argus es la que presenta la distribución geográfica más amplia, localizándose desde Carolina del Norte en EEUU hasta Brasil (Phillips y Melville-Smith, 2006).es
dc.description.sponsorshipUNIVERSIDAD DE CÁDIZ UNIVERSIDAD DE LA HABANAen
dc.language.isoesen
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/en
dc.titleCaracterización de las enzimas digestivas de la langosta Panulirus argus (Latreille, 1804): factores intrínsecos y extrínsecos que intervienen en su regulaciónes
dc.typeTheses and Dissertations*
dc.contributor.institutionUniversidad de Cádiz Facultad de Ciencias del Mar y Ambientales Departamento de Biología
dc.contributor.institutionUniversidad de la Habana Centro de Investigaciones Marinas
dc.description.statusUnpublisheden
dc.description.otherPanulirus argusen
dc.format.pages230en
dc.relation.referencesAguila, J., Cuzon, G., Pascual, C., Domingues, P. M. Gaxiola, G., Sánchez, A., Maldonado, T. and Rosas, C. (2007). The effects of fish hydrolysate (CPSP) level on Octopus maya (Voss and Solis) diet: Digestive enzyme activity, blood metabolites, and energy balance. Aquaculture 273, 641–655. Akiyama, D. M., Dominy, W. G. and Lawrence, A. L. (1992). Penaeid shrimp nutrition. In: Fast, A.W., Lester, L.J. (Eds.), Marine Shrimp Culture: Principles and Practices. Elsevier, Amsterdam, pp. 555– 568. Al-Mohanna, S. Y., Nott, J. A. and Lane, D. J. W. (1985). Mitotic E and Secretory F-cells in the hepatopancreas of the shrimp Penaeus semisulcatus (Crustacea: Decapoda). J. Mar. Biol. Ass. UK 65, 901–910. Barclay, M. C., Irvin, S. J., Williams, K. C. and Smith, D. M. (2006). Comparison of diets for the tropical spiny lobster Panulirus ornatus: astaxanthin-supplemented feeds and mussel flesh. Aquacult. Nutr. 12, 117–125. Barker, P. L. and Gibson, R. (1977). Observations on the feeding mechanism, structure of the gut, and digestive physiology of the European lobster Homarus gammarus (L.) (Decapoda: Nephropidae). J. Exp. Mar. Biol. Ecol. 26, 297-324. Bickmeyer, U., Lüders, A-K. and Saborowski, R. (2008). pH measurements in midgut gland cells of crustaceans. Comp. Biochem. Physiol. 151A, S48-S53. Blakemore, D., Williams, S. and Lehane, M. J. (1995). Protein stimulation of trypsin secretion from the opaque zone midgut cells of Stomoxys calcitrans. Comp. Biochem. Physiol. 110B (2), 301-307. Bradford, M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254. Brandon, M. C., Pennington, J. E., Isoe, J., Zamora, J., Schillinger, A-S. and Miesfeld, R. L. (2008). TOR signaling is required for amino acid stimulation of early trypsin protein synthesis in the midgut of Aedes aegypti mosquitoes. Insect Biochem. Mol. Biol. 38, 916–922. Buddington, R. K. and Krogdahl, Å. (2004). Hormonal regulation of the fish gastrointestinal tract. Comp. Biochem. Physiol. 139A, 261– 271. Cahu, C. L., Rønnestad, I., Grangiera, V. and Zambonino-Infante, J. L. (2004). Expression and activities of pancreatic enzymes in developing sea bass larvae (Dicentrarchus labrax) in relation to intact and hydrolyzed dietary protein; involvement of cholecystokinin. Aquaculture 238, 295–308. Celis-Gerrero, L. E., García-Carreño, F. L. and Navarrete del Toro, M. A. (2004). Characterization of proteases in the digestive system of spiny lobster (Panulirus interruptus). Mar. Biotechnol. 6, 262– 269. Córdova-Murueta, J. H. and García-Carreño, F. L. (2002). Nutritive value of squid and hydrolyzed protein supplement in shrimp feed. Aquaculture 210, 371–384. Cox, S. L. and Davis, M. (2009). An evaluation of potential diets for the culture of postpueruli spiny lobster Panulirus argus (Palinuridae). Aquacult. Nutr. 15, 152-159. Cruz-Ricque, L. E., Guillaume, J. and van Wormhoudt, A. (1989). Effect of squid extracts on time course appearance of glucose and free amino acids in haemolymph in Penaeus japonicus after feeding: preliminary results. Aquaculture 76, 57-65. Favrel, P., Kegel, G., Sedlmeier, D., Keller, R. and van Wormhoudt, A. (1991). Structure and biological activity of crustacean gastrointestinal peptides identified with antibodies to gastrin/cholecystokinin. Biochimie 73, 1233–9. Fodor, K., Harmat, V., Hetényi, C., Kardos, J., Antal, J., Perczel, A., Patthy, A., Katona, G. and Gráf, L. (2005). Extended intermolecular interactions in a serine protease-canonical inhibitor complex account for strong and highly specific inhibition. J. Mol. Biol. 350, 156–169. Galgani, F. and Nagayama, F. (1987). Digestive proteinases in the Japanese spiny lobster Panulirus japonicus. Comp. Biochem. Physiol. 87B, 889–893. Graf, R., Lea, A. O. and Briegel, H. (1998). A temporal profile of the endocrine control of trypsin synthesis in the yellow fever mosquito, Aedes aegypti. J. Insect Physiol. 44, 451–454. Green, G. M. and Miyasaka, K. (1983). Rat pancreatic response to intestinal infusion of intact and hydrolyzed protein. Am. J. Physiol. 245, G394–G398. Hara, H., Hashimoto, N., Akatsuka, N. and Kasai, T. (2000). Induction of pancreatic trypsin by dietary amino acids in rats: Four trypsinogen isozymes and cholecystokinin messenger RNA. J. Nutr. Biochem. 11, 52–59. Hedstrom, L. (1996). Trypsin: a case study in the structural determinants of enzyme specificity. Biol. Chem. 377, 465–470. Hendriks, H. G. C. J. M., Van den Ingh, T. S. G. A. M., Krogdahl, A, Olli, J. and Koninkx, J. F. J. G. (1990). Binding of soybean agglutinin to small intestinal brush border membranes and brush border membrane enzyme activities in Atlantic salmon (Salmo salar). Aquaculture 91, 163–170. Henn, R. L. and Netto, F. M. (1998). Biochemical characterization and enzymatic hydrolysis of different commercial soybean protein isolates. J Agric Food Chem 46:3009–3015. Hirsch, G. C. and Jacobs, S. (1928). Der Arbeitsrhythmus der Mitteldarmdrüse von Astacus leptodactylus. I. Teil: Methodik und Technik. Der Beweis der Periodizität. Z. vergl. Physiol., Bd 8, S. l02-144. Hurst, L. D. (2002). The Ka/Ks ratio: diagnosing the form of sequence evolution. Trends Genet. 18 (9), 486- 487. Irvin, S. J. and Williams, K. C. (2007). Apparent digestibility of selected marine and terrestrial feed ingredients for tropical spiny lobster Panulirus ornatus. Aquaculture 269, 456–463. Jeffs, A. and Davis, M. (2003). An assessment of the aquaculture potential of the Caribbean spiny lobster, Panulirus argus. Proceedings Gulf Caribb. Fish. Institute 54, 413–426. Johnston, D. J. (2003). Ontogenetic changes in digestive enzyme activity of the spiny lobster, Jasus edwardsii (Decapoda, Palinuridae). Mar. Biol. 143, 1071–1082. Kleinholz, L. H. and Little, B. C. (1949). Studies in the regulation of blood-sugar concentration in crustaceans-I. Normal values and experimental hyperglycemia in Libinia emarginata. Biol. Bull. 96, pp. 218–227. Kofuji, P. Y. M., Murashita, K., Hosokawa, H. and Masumoto, T. (2007). Effects of exogenous cholecystokinin and gastrin on the secretion of trypsin and chymotrypsin from yellowtail (Seriola quinqueradiata) isolated pyloric caeca. Comp. Biochem. Physiol. 146A, 124–130. Konturek, S. J., Zabielski, R., Konturek, J. W. and Czarnecki, J. (2003). Neuroendocrinology of the pancreas; role of brain-gut axis in pancreatic secretion. Eur. J. Pharmacol. 481, 1– 14. Le Moullac, G., Klein, B., Sellos, D. and van Wormhoudt, A. (1996). Adaptation of trypsin, chymotrypsin and amylase to casein level and protein source in Penaeus vannamei (Crustacea, Decapoda). J. Exp. Mar. Biol. Ecol. 208, 107–125. 154 Le Moullac, G., van Wormhoudt, A. and AQUACOP (1994). Adaptation of digestive enzymes to dietary protein, carbohydrate and fiber levels and influence of protein and carbohydrate quality in Penaeus vannamei larvae (Crustacea, Decapoda). Aquat. Living Resour. 7, 203-210. Le Vay, L., Rodriguez, A., Kamarudin, M. S. and Jones, D. A. (1993). Influence of live and artificial diets on tissue composition and trypsin activity in Penaeus japonicus larvae. Aquaculture 118, 287-297. Lehane, M. J., Blakemore, D., Williams, S. and Moffatt, M. R. (1995). Regulation of digestive enzyme levels in insects. Comp. Biochem. Physiol. 110B (2), 285-289. Lehnert, S. A. and Johnson, S. E. (2002). Expression of hemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of the Black Tiger Shrimp Penaeus monodon. Comp. Biochem. Physiol. 133B, 163–171. Lhoste, E. F., Fiszlewicz, M., Gueugneau, A-M. and Corring, T. (1994). Adaptation of exocrine pancreas to dietary proteins: Effect of the nature of protein and rat strain on enzyme activities and messenger RNA levels. J. Nutr. Biochem. 5, 84-94. Lu, S. J., Pennington, J. E., Stonehouse, A. R., Mobula, M. M. and Wells, M. A. (2006). Reevaluation of the role of early trypsin activity in the transcriptional activation of the late trypsin gene in the mosquito Aedes aegypti. Insect Biochem. Mol. Biol. 36, 336–343. Lyle, W. G. and MacDonald, C. D. (1983). Molt stage determination in the Hawaiian spiny lobster Panulirus marginatus. J. Crust. Biol. 3, 208–216. Meyer, J. H. and Kelly, G. A. (1976). Canine pancreatic responses to intestinally perfused proteins and protein digests. Am. J. Physiol. 231, 682-691. Moffatt, M. R., Blakemore, D. and Lehane, M. J. (1995). Studies on the synthesis and secretion the midgut of Stomoxys calcitrans. Comp. Biochem. Physiol. 110B (2), 291-300.en
dc.subject.asfaLobster cultureen
dc.subject.asfaAquacultureen
dc.subject.asfaLife cycleen
dc.type.specifiedPhd thesisen
refterms.dateFOA2021-01-30T18:48:03Z


Files in this item

Thumbnail
Name:
Tesis Doctorado Perera, Erick.pdf
Size:
4.597Mb
Format:
PDF
Description:
main article

This item appears in the following Collection(s)

Show simple item record

http://creativecommons.org/licenses/by-nc/3.0/
Except where otherwise noted, this item's license is described as http://creativecommons.org/licenses/by-nc/3.0/